Synthesis 2018; 50(16): 3161-3168
DOI: 10.1055/s-0036-1592003
special topic
© Georg Thieme Verlag Stuttgart · New York

Photooxidative Keto-Trifluoromethylation of Styrenes by Means of an Anthraquinone-Based Organocatalyst

Eiji Yamaguchi*
Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Email: yamaguchi@gifu-pu.ac.jp   Email: itoha@gifu-pu.ac.jp
,
Yuji Kamito
Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Email: yamaguchi@gifu-pu.ac.jp   Email: itoha@gifu-pu.ac.jp
,
Kazuki Matsuo
Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Email: yamaguchi@gifu-pu.ac.jp   Email: itoha@gifu-pu.ac.jp
,
Jun Ishihara
Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Email: yamaguchi@gifu-pu.ac.jp   Email: itoha@gifu-pu.ac.jp
,
Akichika Itoh*
Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Email: yamaguchi@gifu-pu.ac.jp   Email: itoha@gifu-pu.ac.jp
› Author Affiliations
This work was supported by Takeda Science Foundation.
Further Information

Publication History

Received: 26 February 2018

Accepted after revision: 03 April 2018

Publication Date:
18 May 2018 (eFirst)

Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis

Abstract

α-Trifluoromethyl ketones are versatile building blocks for the synthesis of various trifluoromethyl-functionalized molecules. Although there are significant advantages in the development of methods toward direct transformations of styrenes into α-trifluoromethyl ketones, most procedures leading to α-trifluoromethyl ketones require heavy- or transition-metal-based complexes. Herein, a novel method is developed for the synthesis of α-trifluoromethyl ketones via anthraquinone-catalyzed photooxidative keto-trifluoromethylation of styrenes with the readily available Langlois reagent (CF3SO2Na) under an oxygen atmosphere. The reactions proceed smoothly to give the products in moderate to excellent yield with good selectivity.

Supporting Information

 
  • References

    • 1a Isanbor C. O’Hagan D. J. Fluorine Chem. 2006; 127: 303
    • 1b Kirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 1c Muller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 1d Hagmann WK. J. Med. Chem. 2008; 51: 4359

      For selected recent reviews on C–CF3 bond-forming reaction, see:
    • 3a Ma J.-A. Cahard D. Chem. Rev. 2004; 104: 6119
    • 3b Shimizu M. Hiyama T. Angew. Chem. Int. Ed. 2004; 44: 214
    • 3c Ma J.-A. Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 3d Prakash GK. Hu J. Acc. Chem. Res. 2007; 40: 921
    • 3e Ma J.-A. Cahard D. Chem. Rev. 2008; 108: PR1
    • 3f Uneyama K. Katagiri T. Amii H. Acc. Chem. Res. 2008; 41: 817
    • 3g Kumadaki I. Ando A. Sato K. Tarui A. Omote M. Synthesis 2010; 1865
    • 3h Shibata N. Matsnev A. Cahard D. Beilstein J. Org. Chem. 2010; 6: 65
    • 3i Dilman AD. Levin VV. Eur. J. Org. Chem. 2011; 831
    • 3j Furuya T. Kamlet AS. Ritter T. Nature 2011; 473: 470
    • 3k Qing F.-L. Zheng F. Synlett 2011; 1052
    • 3l Roy S. Gregg BT. Gribble GW. Le V.-D. Roy S. Tetrahedron 2011; 67: 2161
    • 3m Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
    • 3n Macé Y. Magnier E. Eur. J. Org. Chem. 2012; 2479
    • 3o Soloshonok V. Aceña J. Sorochinsky A. Synthesis 2012; 44: 1591
    • 3p Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 3q Liu H. Gu Z. Jiang X. Adv. Synth. Catal. 2013; 355: 617
    • 3r Zhang C.-P. Chen Q.-Y. Guo Y. Xiao J.-C. Gu Y.-C. Coord. Chem. Rev. 2014; 261: 28
    • 4a Alvernhe G. Langlois B. Laurent A. Le Drean I. Selmi A. Weissenfels M. Tetrahedron Lett. 1991; 32: 643
    • 4b Schenck HA. Lenkowski PW. Choudhury-Mukherjee I. Ko SH. Stables JP. Patel MK. Brown ML. Bioorg. Med. Chem. 2004; 12: 979
    • 4c Muzalevskiy VM. Nenajdenko VG. Rulev AY. Ushakov IA. Romanenko GV. Shastin AV. Balenkova ES. Haufe G. Tetrahedron 2009; 65: 6991
    • 4d Rudler H. Parlier A. Denneval C. Herson P. J. Fluorine Chem. 2010; 131: 738
    • 4e Ye Y. Kunzi SA. Sanford MS. Org. Lett. 2012; 14: 4979
    • 4f Li Z. Cui Z. Liu Q. Org. Lett. 2013; 15: 406

      For examples of electrophilic trifluoromethylation of carbonyl compounds, see:
    • 5a Umemoto T. Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
    • 5b Umemoto T. Adachi K. J. Org. Chem. 1994; 59: 5692
    • 5c Ma JA. Cahard D. J. Org. Chem. 2003; 68: 8726
    • 5d Noritake S. Shibata N. Nomura Y. Huang Y. Matsnev A. Nakamura S. Toru T. Cahard D. Org. Biomol. Chem. 2009; 7: 3599
    • 5e Allen AE. Macmillan DW. C. J. Am. Chem. Soc. 2010; 132: 4986

      For examples of radical trifluoromethylation of carbonyl compounds, see:
    • 6a Miura K. Taniguchi M. Nozaki K. Oshima K. Utimoto K. Tetrahedron Lett. 1990; 31: 6391
    • 6b Langlois BR. Laurent E. Roidot N. Tetrahedron Lett. 1992; 33: 1291
    • 6c Itoh Y. Mikami K. Org. Lett. 2005; 7: 4883
    • 6d Itoh Y. Mikami K. Org. Lett. 2005; 7: 649
    • 6e Itoh Y. Houk KN. Mikami K. J. Org. Chem. 2006; 71: 8918
    • 6f Itoh Y. Mikami K. J. Fluorine Chem. 2006; 127: 539
    • 6g Itoh Y. Mikami K. Tetrahedron 2006; 62: 7199
    • 6h Mikami K. Tomita Y. Ichikawa Y. Amikura K. Itoh Y. Org. Lett. 2006; 8: 4671
    • 6i Nagib DA. Scott ME. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
    • 6j Pham PV. Nagib DA. MacMillan DW. C. Angew. Chem. Int. Ed. 2011; 50: 6119
    • 6k Jiang H. Cheng Y. Zhang Y. Yu S. Eur. J. Org. Chem. 2013; 5485
    • 6l Li L. Chen QY. Guo Y. J. Org. Chem. 2014; 79: 5145
    • 6m Wang YF. Lonca GH. Chiba S. Angew. Chem. Int. Ed. 2014; 53: 1067
    • 6n Su X. Huang H. Yuan Y. Li Y. Angew. Chem. Int. Ed. 2017; 56: 1338
    • 6o Kawamoto T. Sasaki R. Kamimura A. Angew. Chem. Int. Ed. 2017; 56: 1342
  • 7 For an example of nucleophilic trifluoromethylation of carbonyl compounds, see: Novak P. Lishchynskyi A. Grushin VV. J. Am. Chem. Soc. 2012; 134: 16167
  • 8 Zhang CP. Wang ZL. Chen QY. Zhang CT. Gu YC. Xiao JC. Chem. Commun. 2011; 47: 6632
  • 9 Deb A. Manna S. Modak A. Patra T. Maity S. Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
  • 10 Luo X.-Z. Luo H.-Q. Zhang Z.-P. Dong W. Synlett 2014; 25: 1307
  • 11 Tomita R. Yasu Y. Koike T. Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
  • 12 Li L. Chen Q.-Y. Guo Y. J. Fluorine Chem. 2014; 167: 79
  • 13 Cui L. Matusaki Y. Tada N. Miura T. Uno B. Itoh A. Adv. Synth. Catal. 2013; 355: 2203
  • 14 Yang Y. Liu Y. Jiang Y. Zhang Y. Vicic DA. J. Org. Chem. 2015; 80: 6639
  • 15 Tada N. Ban K. Yoshida M. Hirashima S. Miura T. Itoh A. Tetrahedron Lett. 2010; 51: 6098
  • 16 Maji A. Hazra A. Maiti D. Org. Lett. 2014; 16: 4524
  • 17 Lu Q. Liu C. Huang Z. Ma Y. Zhang J. Lei A. Chem. Commun. 2014; 50: 14101
  • 18 Yasu Y. Koike T. Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
  • 19 van Ramesdonk HJ. Bakker BH. Groeneveld MM. Verhoeven JW. Allen BD. Rostron JP. J. Phys. Chem. A 2006; 110: 13145