Synthesis 2018; 50(08): 1601-1609
DOI: 10.1055/s-0036-1591946
short review
© Georg Thieme Verlag Stuttgart · New York

Advances in the Synthesis of Isatins: A Survey of the Last Decade

Andrei V. Bogdanov*
a  A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia
,
Vladimir F. Mironov
a  A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia
b  Kazan (Volga region) Federal University, Kremlyovskaya str. 18, 420008 Kazan, Russia   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 03 January 2018

Accepted after revision: 03 February 2018

Publication Date:
22 March 2018 (online)


Abstract

Isatin derivatives are widely used in organic synthesis, in medicinal chemistry and in the chemistry of materials. This report summarizes modern trends in the synthesis of substituted indolin-2,3-diones covering the literature from 2007 to 2017. Studies on the influence of the structure of substituents in the initial substrates on the formation of the heterocyclic isatin system and the yields of the target compounds are also discussed.

1 Introduction

2 Oxidation of Indole Derivatives

3 Cyclization of o-Aminoacetophenones

4 Cyclization of N-Acylanilines

5 Miscellaneous

6 Conclusion

 
  • References

    • 1a Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104
    • 1b Moradi R. Ziarani GM. Lashgari N. ARKIVOC 2017; 148
    • 1c Bogdanov AV. Musin LI. Mironov VF. ARKIVOC 2015; (vi): : 362
    • 1d Bogdanov AV. Mironov VF. Chem. Heterocycl. Compd. 2016; 52: 90
    • 1e Bogdanov AV. Mironov VF. Musin LI. Musin RZ. Synthesis 2010; 3268
    • 1f Bogdanov AV. Yusupova GG. Romanova IP. Latypov SK. Krivolapov DB. Mironov VF. Sinyashin OG. Synthesis 2013; 45: 668
    • 1g Xu Z. Zhang S. Gao C. Fan J. Zhao F. Lv Z.-S. Feng L.-S. Chin. Chem. Lett. 2017; 28: 159
  • 2 Sandmeyer T. Helv. Chim. Acta 1919; 2: 234
  • 3 Stolle R. Bergdoll R. Luther M. Auerhahn A. Wacker W. J. Prakt. Chem. 1930; 128: 1
  • 4 Gassman PG. Cue BW. Jr. Luh TY. J. Org. Chem. 1977; 42: 1344
  • 5 Guyot A. Martinet J. Compt. Rend. 1913; 166: 1625
    • 6a Tohma H. Kita Y. Adv. Synth. Catal. 2004; 346: 111
    • 6b Zhdankin VV. Curr. Org. Synth. 2005; 2: 121
    • 6c Ladziata U. Zhdankin VV. ARKIVOC 2006; (ix): : 26
    • 6d Satam V. Harad A. Rajule R. Pati H. Tetrahedron 2010; 66: 7659
    • 6e Duschek A. Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
    • 6f Zhdankin VV. J. Org. Chem. 2011; 76: 1185
  • 7 Yadav JS. Subba Reddy BV. Suresh Reddy C. Krishna AD. Synthesis 2007; 693
  • 8 Yadav JS. Subba Reddy BV. Suresh Reddy C. Krishna AD. Tetrahedron Lett. 2007; 48: 2029
  • 9 Bredenkamp A. Mohr F. Kirsch SF. Synthesis 2015; 47: 1937
  • 10 Bindu VH. Parvathaneni SP. Rao VJ. Catal. Lett. 2017; 147: 1434
  • 11 Zi Y. Cai Z.-J. Wang S.-Y. Ji S.-J. Org. Lett. 2014; 16: 3094
  • 12 Liu P. Guo J. Wei W. Liu X. Sun P. Eur. J. Org. Chem. 2016; 12: 2105
  • 13 Wang C.-P. Jiang G.-F. Tetrahedron Lett. 2017; 58: 1747
  • 14 Luo J. Zhao Y. Xu X. Zheng J. Liang H. Tetrahedron Lett. 2017; 58: 4591
  • 15 Szabo F. Petho B. Gonda Z. Novak Z. RSC Adv. 2013; 3: 4903
  • 16 Chen S. Liu Z. Shi E. Chen L. Wei W. Li H. Cheng Y. Wan X. Org. Lett. 2011; 13: 2274
    • 17a Basavaraju KC. Sharma S. Singh AK. Im DJ. Kim D.-P. ChemSusChem 2014; 7: 1864
    • 17b Liu X. Chen W. Organometallics 2012; 31: 6614
  • 18 Zhang C. Li S. Bures F. Lee R. Ye X. Jiang Z. ACS Catal. 2016; 6: 6853
  • 19 Muneer M. Saquib M. Qamar M. Bahnemann D. Res. Chem. Intermed. 2010; 36: 121
  • 20 Piancatelli G. Scettri A. D’Auria M. Synthesis 1982; 245
  • 21 Kumar CN. S. S. P. Devi CL. Rao VJ. Palaniappan S. Synlett 2008; 2023
    • 22a Sriram R. Kumar CN. S. S. P. Raghunandan N. Ramesh V. Sarangapani M. Rao VJ. Synth. Commun. 2012; 42: 3419
    • 22b Pedras MS. C. Abdoli A. Bioorg. Med. Chem. 2017; 25: 557
  • 23 Yu J.-W. Mao S. Wang Y.-Q. Tetrahedron Lett. 2015; 56: 1575
  • 24 Wang B. Zhu J. Wei Y. Luo G. Qu H. Liu L.-X. Synth. Commun. 2015; 45: 2841
  • 25 Parvathaneni SP. Bikshapathi R. Rao VJ. Tetrahedron Lett. 2015; 56: 6385
  • 26 Wei W.-T. Ying W.-W. Zhu W.-M. Wu Y. Huang Y.-L. Cao Y.-Q. Wang Y.-N. Liang H. Synlett 2017; 28: 2307
  • 27 Wang H. Wang Z. Huang H. Tan J. Xu K. Org. Lett. 2016; 18: 5680
  • 28 Bergman J. Romero I. J. Heterocycl. Chem. 2010; 47: 1215
  • 29 Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals . 2nd ed.; Beller M. Bolm C. Wiley-VCH; Weinheim: 2004: 2
    • 30a Du F.-T. Ji J.-X. Chem. Sci. 2012; 3: 460
    • 30b Evans RW. Zbieg JR. Zhu S. Li W. MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 16074
    • 31a Huang P.-C. Gandeepan P. Cheng C.-H. Chem. Commun. 2013; 49: 8540
    • 31b Huang J. Mao T. Zhu Q. Eur. J. Org. Chem. 2014; 2878
  • 32 Ilangovan A. Satish G. Org. Lett. 2013; 15: 5726
  • 33 Młochowski J. Wójtowicz-Młochowska H. Molecules 2015; 20: 10205
  • 34 Liu Y. Chen H. Hu X. Zhou W. Deng G.-J. Eur. J. Org. Chem. 2013; 4229
  • 35 Foley C. Shaw A. Hulme C. Org. Lett. 2016; 18: 4904
    • 36a Rajeshkumar V. Chandrasekar S. Sekar G. Org. Biomol. Chem. 2014; 12: 8512
    • 36b Ilangovan A. Satish G. J. Org. Chem. 2014; 79: 4984
    • 36c Gao F.-F. Xue W.-J. Wang J.-G. Wu A.-X. Tetrahedron 2014; 70: 4331
  • 37 Rogness DC. Larock RC. J. Org. Chem. 2011; 76: 4980
    • 38a Tang B.-X. Song R.-J. Wu C.-Y. Liu Y. Zhou M.-B. Wei W.-T. Deng G.-B. Yin D.-L. Li J.-H. J. Am. Chem. Soc. 2010; 132: 8900
    • 38b Yue Q. Wang Y. Hai L. Guo L. Yin H. Wu Y. Synlett 2016; 27: 1292
    • 38c Zheng Y. Li J. Yu X. Lv S. Hai L. Wu Y. Tetrahedron Lett. 2016; 57: 39
  • 39 Liu T. Yang H. Jiang Y. Fu H. Adv. Synth. Catal. 2013; 355: 1169
    • 40a Gui Q. Dai F. Liu J. Chen P. Yang Z. Chen X. Tan Z. Org. Biomol. Chem. 2014; 12: 3349
    • 40b Wang Y. Li W. Cheng X. Zhan Z. Ma X. Guo L. Jin H. Wu Y. Tetrahedron 2016; 72: 3193
    • 40c Li J. Cheng X. Ma X. Lv G. Zhan Z. Guan M. Wu Y. Synlett 2016; 27: 2485
  • 41 Jia X. Zhu Y. Yuan Y. Zhang X. Lu S. Zhang L. Luo L. ACS Catal. 2016; 6: 6033
  • 42 Kuan SH. C. Sun W. Wang L. Xia C. Tay MG. Liu C. Adv. Synth. Catal. 2017; 359: 3469
    • 43a Mason JJ. Janosik T. Bergman J. Synthesis 2009; 3642
    • 43b Zhan Z. Cheng X. Ma X. Li J. Hai L. Wu Y. Tetrahedron 2015; 71: 6928
  • 44 Garg P. Jadhav SD. Singh A. Asian J. Org. Chem. 2017; 6: 1019
  • 45 Klein LL. Tufano MD. Tetrahedron Lett. 2013; 54: 1008
  • 46 Ji H. Zhu Y. Shao Y. Liu J. Yuan Y. Jia X. J. Org. Chem. 2017; 82: 9859
  • 47 Li W. Duan Z. Zhang X. Zhang H. Wang M. Jiang R. Zeng H. Liu C. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1893
  • 48 Laursen SR. Jensen MT. Lindhardt AT. Jacobsen MF. Skrydstrup T. Eur. J. Org. Chem. 2016; 1881
  • 49 Söderberg BC. G. Gorugantula SP. Howerton CR. Petersen JL. Dantale SW. Tetrahedron 2009; 65: 7357
  • 50 Maduli EJ. M. Edeson SJ. Swanson S. Procopiou PA. Harrity JP. A. Org. Lett. 2015; 17: 390
  • 51 Satish G. Polu A. Ramar T. Ilangovan A. J. Org. Chem. 2015; 80: 5167
  • 52 Huber SM. Hennig A. Pühlhofer FG. Weiss R. J. Heterocycl. Chem. 2009; 46: 421
  • 53 Senadi GC. Hu W.-P. Boominathan SS. K. Wang J.-J. Chem. Eur. J. 2015; 21: 998
  • 54 Sun J. Liu B. Xu B. RSC Adv. 2013; 3: 5824
  • 55 Lollar CT. Krenek KM. Bruemmer KJ. Lippert AR. Org. Biomol. Chem. 2014; 12: 406
  • 56 Shrestha R. Lee GJ. Lee YR. RSC Adv. 2016; 6: 63782