Synthesis 2018; 50(08): 1721-1727
DOI: 10.1055/s-0036-1591874
paper
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free C–H Arylation of Unactivated Arenes with 8-Hydroxyquinoline as a Promoter

Xuehua Zheng
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
b   School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. of China   Email: wyinuo3@mail.sysu.edu.cn   Email: wudeyan3@mail.sysu.edu.cn
,
Xu-Nian Wu
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Jing-Yi Chen
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Hai-Bin Luo
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Deyan Wu*
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Yinuo Wu*
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
› Author Affiliations
This work was supported by the Natural Science Foundation of China (21402243 and 81602955).
Further Information

Publication History

Received: 18 October 2017

Accepted after revision: 30 November 2017

Publication Date:
23 January 2018 (online)


Abstract

A method for the transition-metal-free direct C–H arylation of unactivated arenes is developed with aryl bromides as substrates and 8-hydroxyquinoline as an efficient promoter. A variety of biaryl compounds with structural diversity are obtained in moderate to high yields. Mechanistic studies reveal that the reaction proceeds via a homolytic­ aromatic substitution pathway.

Supporting Information

 
  • References

    • 1a Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
    • 1b Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 1c Torborg C. Beller M. Adv. Synth. Catal. 2009; 351: 3027
    • 1d Organotransition Metal Chemistry: From Bonding to Catalysis . Hartwig JF. University Science Books; Sausalito: 2010
    • 2a Metal-Catalyzed Cross-Coupling Reactions . 2nd ed.; de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004
    • 2b Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. 2nd ed.; Beller M. Bolm C. Wiley-VCH; Weinheim: 2004
    • 2c Corbet J.-P. Mignani G. Chem. Rev. 2006; 106: 2651
    • 2d Ackermann L. Modern Arylation Methods . Wiley-VCH; Weinheim: 2009
    • 2e Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 3a Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 3b Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 3c Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
  • 4 Yanagisawa S. Ueda K. Taniguchi T. Itami K. Org. Lett. 2008; 10: 4673
  • 5 Liu W. Cao H. Zhang H. Zhang H. Chung KH. He C. Wang HB. Kwong FY. Lei A. J. Am. Chem. Soc. 2010; 132: 16737
  • 6 Shirakawa E. Itoh K.-i. Higashino T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
  • 7 Sun C.-L. Li H. Yu D.-G. Yu M. Zhou X. Lu X.-Y. Huang K. Zheng S.-F. Li B.-J. Shi Z.-J. Nat. Chem. 2010; 2: 1044
    • 8a Chan TL. Wu Y. Choy PY. Kwong FY. Chem. Eur. J. 2013; 19: 15802
    • 8b Qiu Y. Liu Y. Yang K. Hong W. Li Z. Wang Z. Yao Z. Jiang S. Org. Lett. 2011; 13: 3556
    • 8c Yong GP. She WL. Zhang YM. Li YZ. Chem. Commun. 2011; 47: 11766
    • 8d Liu H. Yin B. Gao Z. Li Y. Jiang H. Chem. Commun. 2012; 48: 2033
    • 8e Ng YZ. Chan CS. Chan KS. Tetrahedron Lett. 2012; 53: 3911
    • 8f To CT. Chan TL. Li BZ. Hui YY. Kwok TY. Lam SY. Chan KS. Tetrahedron Lett. 2011; 52: 1023
    • 8g Chen W.-C. Hsu Y.-C. Shih W.-C. Lee C.-Y. Chuang W.-H. Tsai Y.-F. Chen PP.-Y. Ong T.-G. Chem. Commun. 2012; 48: 6702
    • 8h Tanimoro K. Ueno M. Takeda K. Kirihata M. Tanimori S. J. Org. Chem. 2012; 77: 7844
    • 8i Zhao H. Shen J. Guo J. Ye R. Zheng H. Chem. Commun. 2013; 49: 2323
    • 8j Liu W. Tian F. Wang X. Yu H. Bi Y. Chem. Commun. 2013; 49: 2983
    • 8k Ghosh D. Lee JY. Liu CY. Chiang YH. Lee HM. Adv. Synth. Catal. 2014; 356: 406
    • 8l Song Q. Zhang D. Zhu Q. Xu Y. Org. Lett. 2014; 16: 5272
    • 8m Liu W. Xu L. Tetrahedron 2015; 71: 4974
  • 9 Oliveri V. Vecchio G. Eur. J. Med. Chem. 2016; 120: 252
    • 10a Albrecht M. Fiege M. Osetska O. Coord. Chem. Rev. 2008; 252: 812
    • 10b Prachayasittikul V. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Drug Des. Dev. Ther. 2013; 7: 1157
  • 11 Wu Y. Choy PY. Kwong FY. Org. Biomol. Chem. 2014; 12: 6820
  • 12 Wu Y. Wong SM. Mao F. Chan TL. Kwong FY. Org. Lett. 2012; 14: 5306
  • 13 Dai ZQ. Liu KQ. Zhang ZY. Wei BM. Guan JT. Asian J. Chem. 2013; 25: 6303
  • 14 Wang H. Wang B. Li B. J. Org. Chem. 2017; 82: 9560
  • 15 Gund SH. Balsane KE. Nagarkar JM. Tetrahedron Lett. 2017; 58: 2936
  • 16 Candish L. Freitag M. Gensch T. Glorius F. Chem. Sci. 2017; 8: 3618
  • 17 Affrose A. Suresh P. Azath IA. Pitchumani K. RSC Adv. 2015; 5: 27533
  • 18 Yadav MR. Nagaoka M. Kashihara M. Zhong RL. Miyazaki T. Sakaki S. Nakao Y. J. Am. Chem. Soc. 2017; 139: 9423
  • 19 Choudhury AR. Mukherjee S. Chem. Sci. 2016; 7: 6940
  • 20 Zhu YW. Yi WB. Qian JL. Cai C. ChemCatChem 2014; 6: 733
  • 21 delPozo J. Casares JA. Espinet P. Chem. Eur. J. 2016; 22: 4274
  • 22 Pan C. Zhu J. Chen R. Yu JT. Org. Biomol. Chem. 2017; 15: 6467