Synthesis 2018; 50(08): 1610-1620
DOI: 10.1055/s-0036-1591773
feature
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Benzopyran-Fused Flavone Derivatives via Microwave-Assisted Intramolecular C–H Activation

Zoltán Sipos
Department of Organic Chemistry, University of Debrecen, 4002 POB 400, Debrecen, Hungary   Email: konya.krisztina@science.unideb.hu
,
Department of Organic Chemistry, University of Debrecen, 4002 POB 400, Debrecen, Hungary   Email: konya.krisztina@science.unideb.hu
› Author Affiliations
The research was financially supported by the EU and co-financed by the European Development Fund under the project GINOP-2.3.2-15-2016-00008.
Further Information

Publication History

Received: 16 December 2017

Accepted after revision: 12 February 2018

Publication Date:
07 March 2018 (online)

Dedicated to the memory of Prof. Tamás Patonay

Abstract

A microwave-assisted intramolecular direct arylation method for the synthesis of benzopyran-fused flavone derivatives containing natural flavone backbones is described. Different polyalkoxy flavones were synthesized and functionalized with 2-bromobenzyl bromide. The resulting compounds were subjected to palladium-catalyzed intramolecular direct arylation reactions supported by microwave irradiation to produce fused tetracyclic flavones. In the case of the 7-substituted chrysin derivative, the regioselectivity of the coupling was also examined.

Supporting Information

 
  • References

    • 1a Ferreira SB. da Silva F. dC. Pinto AC. Gonzaga DT. G. Ferreira VF. J. Heterocycl. Chem. 2009; 46: 1080
    • 1b Nicolaou KC. Pfefferkorn JA. Roecker AJ. Cao GQ. Barluenga S. Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
    • 2a Azevedo CM. G. Afonso CM. M. Soares JX. Reis S. Sousa D. Lima RT. Vasconcelos MH. Pedro M. Barbosa J. Gales L. Pinto MM. M. Eur. J. Med. Chem. 2013; 69: 798
    • 2b Chen J.-J. Chen I.-S. Duh C.-Y. Planta Med. 2004; 70: 1195
    • 2c Zelefack F. Guilet D. Fabre N. Bayet C. Chevalley S. Ngouela S. Lenta BN. Valentin A. Tsamo E. Dijoux-Franca M.-G. J. Nat. Prod. 2009; 72: 954
    • 2d Zou Y.-S. Hou A.-J. Zhu G.-F. Chen Y.-F. Sun H.-D. Zhao Q.-S. Bioorg. Med. Chem. 2004; 12: 1947
    • 3a Devlin JP. Freter K. Stewart PB. J. Med. Chem. 1977; 20: 205
    • 3b Yu D. Chen C.-H. Brossi A. Lee K.-H. J. Med. Chem. 2004; 47: 4072
    • 4a Achmad SA. Hakim EH. Juliawaty LD. Makmur L. Aimi N. Ghisalberti EL. J. Nat. Prod. 1996; 59: 878
    • 4b Iinuma M. Yokoyama J. Ohyama M. Tanaka T. Ruangrungsi N. Phytochemistry 1994; 35: 785
    • 4c Zhang L. Tao G. Chen J. Zheng Z.-P. Molecules 2016; 21: 1130
    • 5a Devlin JP. Bauen A. Possanza GJ. Stewart PB. J. Med. Chem. 1978; 21: 480
    • 5b Barnard DL. Xu Z.-Q. Stowell VD. Yuan H. Smee DF. Samy R. Sidwell RW. Nielsen MK. Sun L. Cao H. Li A. Quint C. Deignan J. Crabb J. Flavin MT. Antiviral Chem. Chemother. 2002; 13: 39
    • 5c Su C.-R. Yeh SF. Liu CM. Damu AG. Kuo T.-H. Chiang P.-C. Bastow KF. Lee K.-H. Wu T.-S. Bioorg. Med. Chem. 2009; 17: 6137
    • 6a Devlin JP. Can. J. Chem. 1975; 53: 343
    • 6b Devlin JP. Can. J. Chem. 1975; 53: 350
    • 7a Fan M. Zhou Y. Guo Y. Song J. Duan X. Anal. Methods 2017; 9: 3255
    • 7b Zhou Y. Li M. Guo Y. Lu H. Song J. Bo Z. Wang H. ACS Appl. Mater. Interfaces 2016; 8: 31348
  • 8 Shou QY. Tan Q. Shen ZW. Bioorg. Med. Chem. Lett. 2009; 19: 3389
  • 9 Wang Y.-H. Hou A.-J. Chen L. Chen D.-F. Sun H.-D. Zhao Q.-S. Bastow KF. Nakanish Y. Wang X.-H. Lee K.-H. J. Nat. Prod. 2004; 67: 757
  • 10 Thelingwani RS. Dhansay K. Smith P. Chibale K. Masimirembwa CM. Xenobiotica 2012; 42: 989
  • 11 Yang Y. Limei L. Lou J. Cheng Y. Wang Y. Shu D. Shi L. Gao X-M. Ning P. Hu Q. Heterocycles 2015; 91: 375
  • 12 Jia B.-X. Yang J. Chen X.-Q. Cao Y. Lai M.-X. Wang Q. Helv. Chim. Acta 2011; 94: 2283
  • 15 Ames DE. Opalko A. Synthesis 1983; 234
    • 16a Campeau L.-C. Parisien M. Jean A. Fagnou K. J. Am. Chem. Soc. 2006; 128: 581
    • 16b Campeau L.-C. Parisien M. Leblanc M. Fagnou K. J. Am. Chem. Soc. 2004; 126: 9186
    • 16c Catellani M. Motti E. Della CaN. Top. Catal. 2010; 53: 991
    • 16d Hennings DD. Iwasa S. Rawal VH. J. Org. Chem. 1997; 62: 2
    • 16e Korenaga T. Suzuki N. Sueda M. Shimada K. J. Organomet. Chem. 2015; 780: 63
    • 16f Lafrance M. Lapointe D. Fagnou K. Tetrahedron 2008; 64: 6015
  • 17 Science of Synthesis: Cross Coupling and Heck-Type Reactions 3 . Larhed M. Odell LR. Georg Thieme Verlag; Stuttgart: 2013
    • 18a Kim Y. Moon Y. Kang D. Hong S. Org. Biomol. Chem. 2014; 12: 3413
    • 18b Shin Y. Yoo C. Moon Y. Lee Y. Hong S. Chem. Asian. J. 2015; 10: 878
  • 19 Parveen I. Ahmed N. Tetrahedron Lett. 2017; 58: 2302
  • 20 Pardo LM. Prendergast AM. Nolan M.-T. Muimhneacháin EÓ. McGlacken GP. Eur. J. Org. Chem. 2015; 3540
  • 21 Chu H.-W. Wu H.-T. Lee Y.-J. Tetrahedron 2004; 60: 2647
  • 22 Jang J. Kim HP. Park H. Arch. Pharm. Res. 2005; 28: 877
  • 23 Yamasaki K. Hishiki R. Kato E. Kawabata J. ACS Med. Chem. Lett. 2011; 2: 17
  • 24 Lafrance M. Rowley CN. Woo TK. Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
    • 25a Min M. Choe H. Hong S. Asian J. Org. Chem. 2012; 1: 47
    • 25b Moon Y. Hong S. Chem. Commun. 2012; 48: 7191
    • 25c Liégault B. Lee D. Huestis MP. Stuart DR. Fagnou K. J. Org. Chem. 2008; 73: 5022
    • 25d Potavathri S. Pereira KC. Gorelsky SI. Pike A. LeBris AP. DeBoef B. J. Am. Chem. Soc. 2010; 132: 14676
    • 27a Besson T. Fruit C. Synthesis 2016; 48: 3879
    • 27b Sharma A. Vacchani D. Van der Eycken E. Chem. Eur. J. 2013; 19: 1158
  • 28 Pivsa-Art S. Satoh T. Kawamura Y. Miura M. Nomura M. Bull. Chem. Soc. Jpn. 1998; 71: 467
    • 29a Wessely F. Moser GH. Monatsh. Chem. 1930; 56: 97
    • 29b Hlubucek J. Ritchie E. Taylor WC. Austr. J. Chem. 1971; 24: 2347