Synthesis 2018; 50(06): 1307-1314
DOI: 10.1055/s-0036-1591724
paper
© Georg Thieme Verlag Stuttgart · New York

Brønsted Acid Catalyzed Domino 1,6-Addition/Intramolecular Cyclization­ Reactions: Diastereoselective Synthesis of Dihydro­coumarin Frameworks

Zheng Cao
,
Gui-Xiang Zhou
,
Chun Ma
,
Kang Jiang
,
Guang-Jian Mei*
We much appreciate the financial support from NSFC (21702077), the Natural Science Foundation of Jiangsu Province (BK20170227), PAPD, TAPP and the Undergraduate Student Project of Jiangsu Province.
Weitere Informationen

Publikationsverlauf

Received: 19. September 2017

Accepted after revision: 20. Oktober 2017

Publikationsdatum:
21. November 2017 (online)


Abstract

An efficient domino 1,6-addition/intramolecular cyclization reaction between para-quinone methides (p-QMs) and azlactones under Brønsted acid catalysis was established. A series of highly functionalized dihydrocoumarins were constructed in good to excellent yields (up to 96%) with excellent diastereoselectivities (all >20:1 d.r.). In this process, the Brønsted acid plays a crucial role not only in activating the two substrates, but also in controlling the diastereoselectivity of the reaction via hydrogen-bonding interactions. In addition, this protocol demonstrates the great practicability of utilizing p-QMs in domino reactions.

Supporting Information

 
  • References

  • 1 These authors contributed equally to the work.
    • 2a Kamat DP. Tilve SG. Kamat VP. Kirtany JK. Org. Prep. Proced. Int. 2015; 47: 1
    • 2b Semeniuchenko V. Groth U. Khilya V. Synthesis 2009; 3533
    • 3a Posakony J. Hirao M. Stevens S. Simon JA. Bedalov A. J. Med. Chem. 2004; 47: 2635
    • 3b Matsuo A. Yuki S. Nakayama M. Chem. Lett. 1983; 1041
  • 4 Nishiyama T. Ohnishi J. Hashiguchi Y. Biosci., Biotechnol., Biochem. 2001; 65: 1127
    • 5a Brenzan MA. Nakamura CV. Filho BP. D. Ueda-Nakamura T. Young MC. M. Correa AG. Junior JA. dos Santos AO. Cortez DA. G. Biomed. Pharmacother. 2008; 62: 651
    • 5b Sun J. Ding WX. Hong XP. Zhang KY. Zou Y. Chem. Nat. Compd. 2012; 48: 16
    • 5c Zhang XF. Xie L. Liu Y. Xiang JF. Li L. Tang YL. J. Mol. Struct. 2008; 888: 145

      For selected examples, see:
    • 6a Xu L. Shao Z. Wang L. Xiao J. Org. Lett. 2014; 16: 796
    • 6b Wu Z. Wang X. Li F. Wu J. Wang J. Org. Lett. 2015; 17: 3588
    • 6c Akula R. Guiry PJ. Org. Lett. 2016; 18: 5472
    • 6d Teng B. Chen W. Dong S. Kee CW. Gandamana DA. Zong L. Tan C.-H. J. Am. Chem. Soc. 2016; 138: 9935
    • 6e Zhang YC. Zhu QN. Yang X. Zhou LJ. Shi F. J. Org. Chem. 2016; 81: 1681
    • 6f Jin J.-H. Li X.-Y. Luo X. Fossey JS. Deng W.-P. J. Org. Chem. 2017; 82: 5424
    • 6g Wang Y. Pan J. Dong J. Yu C. Li T. Wang X.-S. Shen S. Yao C. J. Org. Chem. 2017; 82: 1790
    • 6h Yao W. Yu Z. Wen S. Ni H. Ullah N. Lan Y. Lu Y. Chem. Sci. 2017; 8: 5196

      For selected reviews, see:
    • 7a Pathak TP. Sigman MS. J. Org. Chem. 2011; 76: 9210
    • 7b Willis NJ. Bray CD. Chem. Eur. J. 2012; 18: 9160
    • 7c Bai W.-J. David JG. Feng Z.-G. Weaver MG. Wu K.-L. Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
    • 7d Singh MS. Nagaraju A. Anand N. Chowdhury S. RSC Adv. 2014; 4: 55924
    • 7e Jaworski AA. Scheidt KA. J. Org. Chem. 2016; 81: 10145

      For selected examples, see:
    • 8a Lewis RS. Garza CJ. Dang AT. Pedro TK. A. Chain WJ. Org. Lett. 2015; 17: 2278
    • 8b Guo W. Wu B. Zhou X. Chen P. Wang X. Zhou Y.-G. Liu Y. Li C. Angew. Chem. Int. Ed. 2015; 54: 4522
    • 8c Luan Y. Schaus SE. J. Am. Chem. Soc. 2012; 134: 19965
    • 8d Mattson AE. Scheidt KA. J. Am. Chem. Soc. 2007; 129: 4508
    • 9a Yang QQ. Xiao WJ. Eur. J. Org. Chem. 2017; 233
    • 9b Lian XL. Adili A. Liu B. Tao ZL. Han ZY. Org. Biomol. Chem. 2017; 15: 3670
    • 9c Jiang X.-L. Liu S.-J. Gu Y.-Q. Mei G.-J. Shi F. Adv. Synth. Catal. 2017; 359: 3341

      For selected examples, see:
    • 10a Wang Z.-B. Sun J.-W. Org. Lett. 2017; 19: 2334
    • 10b Chen P. Wang K. Guo W. Liu X. Liu Y. Li C. Angew. Chem. Int. Ed. 2017; 56: 3689
    • 10c Alamsetti SK. Spanka M. Schneider C. Angew. Chem. Int. Ed. 2016; 55: 2392
    • 10d Zhao J.-J. Zhang Y.-C. Xu M.-M. Tang M. Shi F. J. Org. Chem. 2015; 80: 10016
    • 10e Zhao J.-J. Sun S.-B. He S.-H. Wu Q. Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 10f Tsui GC. Liu L. List B. Angew. Chem. Int. Ed. 2015; 54: 7703
    • 10g Saha S. Schneider C. Org. Lett. 2015; 17: 648
    • 10h Hsiao C.-C. Raja S. Liao H.-H. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
    • 10i Hsiao C.-C. Liao H.-H. Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
    • 10j El-Sepelgy O. Haseloff S. Alamsetti SK. Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923
    • 10k Chen P. Wang K. Guo W. Liu X. Liu Y. Li C. Angew. Chem. Int. Ed. 2017; 56: 3689
    • 11a Lv H. Jia W.-Q. Sun L.-H. Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
    • 11b Izquierdo J. Orue A. Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
    • 11c Mei G.-J. Zhu Z.-Q. Zhao J.-J. Bian C.-Y. Chen J. Chen R.-W. Shi F. Chem. Commun. 2017; 53: 2768
  • 12 Yu X.-Y. Chen J.-R. Wei Q. Cheng H.-G. Liu Z.-C. Xiao W.-J. Chem. Eur. J. 2016; 22: 6774

    • For related reviews, see:
    • 13a Caruana L. Fochi M. Bernardi L. Molecules 2015; 20: 11733
    • 13b Parra A. Tortosa M. ChemCatChem 2015; 7: 1524
    • 13c Chauhan P. Kaya U. Enders D. Adv. Synth. Catal. 2017; 359: 888

      For selected examples, see:
    • 14a Chu W.-D. Zhang L.-F. Bao X. Zhao X.-H. Zeng C. Du J.-Y. Zhang G.-B. Wang F.-X. Ma X.-Y. Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
    • 14b Caruana L. Kniep F. Johansen TK. Poulsen PH. Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
    • 14c Lou Y. Cao P. Jia T. Zhang Y. Wang M. Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
    • 14d Wang Z. Wong YF. Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
    • 14e Deng Y.-H. Zhang X.-Z. Yu K.-Y. Yan X. Du J.-Y. Huang H. Fan C.-A. Chem. Commun. 2016; 52: 4183
    • 14f Dong N. Zhang Z.-P. Xue X.-S. Li X. Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 1460
    • 14g He F.-S. Jin J.-H. Yang Z.-T. Yu X. Fossey JS. Deng W.-P. ACS Catal. 2016; 6: 652
    • 14h Huang B. Shen Y.-Y. Mao Z.-J. Liu Y. Cui S.-L. Org. Lett. 2016; 18: 4888
    • 14i Jarava-Barrera C. Parra A. López A. Cruz-Acosta F. Collado-Sanz D. Cárdenas DJ. Tortosa M. ACS Catal. 2016; 6: 442
    • 14j Li X. Xu X. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 428
    • 14k Shen Y. Qi J. Mao Z. Cui S. Org. Lett. 2016; 18: 2722
    • 14l Wong Y.-F. Wang Z. Sun J. Org. Biomol. Chem. 2016; 14: 5751
    • 14m Zhang X.-Z. Deng Y.-H. Yan X. Yu K.-Y. Wang F.-X. Ma X.-Y. Fan C.-A. J. Org. Chem. 2016; 81: 5655
    • 14n Zhao K. Zhi Y. Wang A. Enders D. ACS Catal. 2016; 6: 657
    • 14o Li S. Liu Y. Huang B. Zhou T. Tao H. Xiao Y. Liu L. Zhang J. ACS Catal. 2017; 7: 2805
    • 14p Zhuge R. Wu L. Quan M. Butt N. Yang G. Zhang W. Adv. Synth. Catal. 2017; 359: 1028
    • 14q Molleti N. Kang J.-Y. Org. Lett. 2017; 19: 958

      For selected reviews on domino reactions, see:
    • 15a Enders D. Grondal C. Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 15b Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 15c Pellissier H. Chem. Rev. 2013; 113: 442
    • 15d Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390

      For selected examples, see:
    • 16a Gai K. Fang X. Li X. Xu J. Wu X. Lin A. Yao H. Chem. Commun. 2015; 51: 15831
    • 16b Yuan Z. Fang X. Li X. Wu J. Yao H. Lin A. J. Org. Chem. 2015; 80: 11123
    • 16c Ma C. Huang Y. Zhao Y. ACS Catal. 2016; 6: 6408
    • 16d Yuan Z. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 3370
    • 16e Zhang X.-Z. Du J.-Y. Deng Y.-H. Chu W.-D. Yan X. Yu K.-Y. Fan C.-A. J. Org. Chem. 2016; 81: 2598
    • 16f Roiser L. Waser M. Org. Lett. 2017; 19: 2338
    • 16g Yuan Z. Gai K. Wu Y. Wu J. Lin A. Yao H. Chem. Commun. 2017; 53: 3485
    • 16h Yuan Z. Liu L. Pan R. Yao H. Lin A. J. Org. Chem. 2017; 82: 8743
    • 16i Zhang X.-Z. Deng Y.-H. Gan K.-J. Yan X. Yu K.-Y. Wang F.-X. Fan C.-A. Org. Lett. 2017; 19: 1752
  • 17 Zhao K. Zhi Y. Shu T. Valkonen A. Rissanen K. Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
  • 18 Liao JY. Ni Q. Zhao Y. Org. Lett. 2017; 19: 4074
  • 19 Liu S. Lan X.-C. Chen K. Hao W.-J. Li G. Tu S.-J. Jiang B. Org. Lett. 2017; 19: 3831
    • 20a Mei G.-J. Li D. Zhou G.-X. Shi Q. Cao Z. Shi F. Chem. Commun. 2017; 53: 10030
    • 20b Mei G.-J. Bian C.-Y. Li G.-H. Xu S.-L. Zheng W.-Q. Shi F. Org. Lett. 2017; 19: 3219
  • 21 Saleh SA. Tashtoush HI. Tetrahedron 1998; 54: 14157
  • 22 CCDC 1574412 (3aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures; also see the Supporting Information.