Synthesis 2018; 50(16): 3197-3204
DOI: 10.1055/s-0036-1591596
special topic
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Decarboxylative Coupling Reactions of Propiolic Acid Derivatives and Arylsulfonyl Hydrazide

Jaerim Park
a  Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea   Email: sunwoo@chonnam.ac.kr
,
Kwang Ho Song*
b  Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea   Email: khsong@korea.ac.kr
,
Sunwoo Lee*
a  Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea   Email: sunwoo@chonnam.ac.kr
› Author Affiliations
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2015R1A4A1041036, NRF-2017R1A2B2002929).
Further Information

Publication History

Received: 07 May 2018

Accepted after revision: 29 May 2018

Publication Date:
16 July 2018 (online)

Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis

Abstract

Arylsulfonyl hydrazides were employed as coupling partners for the decarboxylative coupling reaction of propiolic acid derivatives. When the reaction was conducted using Pd(TFA)2 (1.0 mol%), dppp (1.0 mol%), and Cu(OAc)2 (2.4 equiv) in DMF at 100 °C for 0.5 hour, the desired coupled products were formed in moderate to good yields. The reaction showed good tolerance toward functional groups such as ester, ketone, cyano, nitro, chloro, and bromo groups.

Supporting Information

 
  • References

    • 1a Würtz S. Glorius F. Acc. Chem. Res. 2008; 41: 1523
    • 1b Fu GC. Acc. Chem. Res. 2008; 41: 1555
    • 1c Fleckenstein CA. Plenio H. Chem. Soc. Rev. 2010; 39: 694
    • 1d Slagt VF. de Vries AH. M. de Vries JG. Kellogg RM. Org. Process Res. Dev. 2010; 14: 30
    • 1e So CM. Kwong FY. Chem. Soc. Rev. 2011; 40: 4986
    • 1f Johansson Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062

      For some examples, see:
    • 2a Louie J. Hartwig JF. Tetrahedron Lett. 1995; 36: 3609
    • 2b Old DW. Wolfe JP. Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9722
    • 2c Littke AF. Dai C. Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
    • 2d Fernandez-Rodriguez MA. Shen Q. Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 2e Buchwald SL. Mauger C. Mignani G. Scholz U. Adv. Synth. Catal. 2006; 348: 23
    • 2f Wu X.-F. Anbarasan P. Neumann H. Beller M. Angew. Chem. Int. Ed. 2010; 49: 9047
    • 2g Seechurn CC. J. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062

      For some examples, see:
    • 3a Xi P. Yang F. Qin S. Zhao D. Lan J. Gao G. Hu C. You J. J. Am. Chem. Soc. 2010; 132: 1822
    • 3b Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 3c Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 3d Wang T.-T. Wang F.-X. Yang F.-L. Tian S.-K. Chem. Commun. 2014; 50: 3802
    • 3e Yu J. Liiu J. Shi G. Shao C. Zhang Y. Angew. Chem. Int. Ed. 2015; 54: 4079
    • 4a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett. 1975; 4467
    • 4b Negishi E.-i. Anastasia L. Chem. Rev. 2003; 103: 1979
    • 4c Doucet H. Hierso J.-C. Angew. Chem. Int. Ed. 2007; 46: 834
    • 4d Plenio H. Angew. Chem. Int. Ed. 2008; 47: 6954
    • 4e Magano J. Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 4f Chinchilla R. Nájera C. Chem. Soc. Rev. 2011; 40: 5084
    • 4g Karak M. Barbosa LC. A. Hargadenc GC. RSC Adv. 2014; 4: 53442
    • 4h Thomas AM. Sujatha A. Anilkumar G. RSC Adv. 2014; 4: 21688
    • 4i Wang D. Gao S. Org. Chem. Front. 2014; 1: 556
    • 4j Nasrollahzadeh M. Atarod M. Alizadeh M. Hatamifard A. Sajadi SM. Curr. Org. Chem. 2017; 21: 708
    • 5a Cakmak Y. Akkaya EU. Org. Lett. 2009; 11: 85
    • 5b Perez M. Ayad T. Maillos P. Poughon V. Fahy J. Ratovelomanana-Vidal V. ACS Med. Chem. Lett. 2016; 7: 403
    • 5c Subeesh MS. Shanmugasundaram K. Sunesh CD. Chitumalla RK. Jang J. Choe Y. J. Phys. Chem. C 2016; 120: 12207
    • 5d Mphahlele MJ. Makhafola TJ. Mmonwa MM. Bioorg. Med. Chem. 2016; 24: 4576
  • 6 Qian L.-W. Sun M. Dong J. Xu Q. Zhou Y. Yin S.-F. J. Org. Chem. 2017; 82: 6764
    • 7a Moon J. Jeong M. Nam H. Ju J. Moon JH. JungH M. Lee S. Org. Lett. 2008; 10: 945
    • 7b Park K. Lee S. RSC Adv. 2013; 3: 14165
    • 8a Park K. Palani T. Pyo A. Lee S. Tetrahedron Lett. 2012; 53: 733
    • 8b Park K. You J.-M. Jeon S. Lee S. Eur. J. Org. Chem. 2013; 1973
    • 8c Lim J. Choi J. Kim H.-S. Kim IS. Nam KC. Kim J. Lee S. J. Org. Chem. 2016; 81: 303
    • 9a Moon J. Jang M. Lee S. J. Org. Chem. 2009; 74: 1403
    • 9b Kim H. Lee PH. Adv. Synth. Catal. 2009; 351: 2827
    • 9c Park K. Bae G. Moon J. Choe J. Song KH. J. Org. Chem. 2010; 75: 6244
    • 9d Li X. Yang F. Wu Y. J. Org. Chem. 2013; 78: 4543
    • 9e Li X. Yang F. Wu Y. RSC Adv. 2014; 4: 13738
    • 9f Rong G. Mao J. Yan H. Zheng Y. Zhang G. J. Org. Chem. 2015; 80: 7652
    • 9g Lv WX. Zeng YF. Zhang SS. Li Q. Wang H. Org. Lett. 2015; 17: 2972
    • 9h Li S. Li X. Yang F. Wu F. Org. Chem. Front. 2015; 2: 1076
    • 10a Jang J. Raja GC. E. Lee J.-H. Son Y. Kim J. Lee S. Tetrahedron Lett. 2016; 57: 4581
    • 10b Lee J.-H. Raja GC. E. Son Y. Jang J. Kim J. Lee S. Tetrahedron Lett. 2016; 57: 4824
    • 10c Raja GC. E. Irudayanathan FM. Kim H.-S. Kim J. Lee S. J. Org. Chem. 2016; 81: 5244
  • 11 Kusy R. Grela K. Org. Lett. 2016; 18: 6196
  • 12 Zhang Y. Jamison TF. Patel S. Mainolfi N. Org. Lett. 2011; 13: 280
  • 13 Tian Z.-Y. Wang S.-M. Jia S.-J. Song H.-X. Zhang C.-P. Org. Lett. 2017; 19: 5454
  • 14 Chang D. Gao F. Shi L. Tetrahedron 2018; 74: 2428
  • 15 Patil PH. Fernandes RA. RSC Adv. 2015; 5: 54037