Synthesis 2018; 50(21): 4243-4253
DOI: 10.1055/s-0036-1591592
feature
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Cycloetherification by Bifunctional Organocatalyst

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishkyo, 615-8510 Kyoto, Japan   Email: matsubara.seijiro.2@kyoto-u.ac.jp
,
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishkyo, 615-8510 Kyoto, Japan   Email: matsubara.seijiro.2@kyoto-u.ac.jp
› Author Affiliations
This work was supported financially by JSPS KAKENHI Grant Number 15H05845, 16K13994, 17K19120, 18K14214, and 18H04258.
Further Information

Publication History

Received: 17 April 2018

Accepted: 27 April 2018

Publication Date:
26 June 2018 (online)


Published as part of the Special Section on the 26th French–Japanese Symposium on Medicinal and Fine Chemistry

Abstract

Attempts to obtain enantiomerically enriched tetrahydrofuran derivatives via an intramolecular oxy-Michael addition reaction of ε-hydroxyenone is discussed. Despite previous difficulties associated with the asymmetric induction of this reaction, which can proceed even without a catalyst, a highly efficient asymmetric induction was realized using a bifunctional organocatalyst derived from a cinchona alkaloid. The reaction could be extended to ζ-hydroxyenone to yield an optically active tetrahydropyran derivative with a high ee. In these reactions, it is important for the gentle acidic and basic sites in the bifunctional organocatalyst to be arranged properly within the molecular skeleton of the catalyst. The high performance asymmetric induction relied on the affinity of the catalyst for the substrate, which played an important role. A disubstituted tetrahydropyran synthesis could be effectively performed via kinetic resolution using ζ-hydroxyenone containing a secondary alcohol moiety using a chiral phosphoric acid catalyst.

Supporting Information

 
  • References

    • 1a Knowles RR. Jacobsen EN. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20678
    • 1b Zhou Q.-L. Angew. Chem. Int. Ed. 2016; 55: 5352

      For metallic bifunctional catalysts, see:
    • 2a Sasai H. Suzuki T. Itoh N. Tanaka K. Date T. Okamura K. Shibasaki M. J. Am. Chem. Soc. 1993; 115: 10372
    • 2b Hamashima Y. Sawada D. Kanai M. Shibasaki M. J. Am. Chem. Soc. 1999; 121: 2641
    • 2c Trost BM. Ito H. Silcoff ER. J. Am. Chem. Soc. 2001; 123: 3367
    • 2d Trost BM. Hirano K. Angew. Chem. Int. Ed. 2012; 51: 6480
    • 2e Shibasaki M. Kanai M. Matsunaga S. Kumagai N. Acc. Chem. Res. 2009; 42: 1117
    • 3a Krautwald S. Carreira EM. J. Am. Chem. Soc. 2017; 139: 5627
    • 3b Vellalath S. Romo D. Angew. Chem. Int. Ed. 2016; 55: 13934
    • 3c Jindal G. Kisan HK. Sunoj RB. ACS Catal. 2015; 5: 480
    • 3d Frongia A. Secci F. Melis N. C. R. Chim. 2015; 18: 456
    • 3e Shirakawa S. Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 3f Scheffler U. Mahrwald R. Chem. Eur. J. 2013; 19: 14346
    • 3g Yu X. Wang W. Chem. Asian J. 2008; 3: 516
    • 3h Yoon TP. Jacobsen EN. Science 2003; 299: 1691
    • 3i Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 4 Asano K. Matsubara S. J. Am. Chem. Soc. 2011; 133: 16711
    • 5a Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967
    • 5b Connon SJ. Chem. Commun. 2008; 2499
    • 5c Zheng S. Schienebeck CM. Zhang W. Wang H.-Y. Tang W. Asian J. Org. Chem. 2014; 3: 366

      For reviews on chiral tetrahydropyrans found in bioactive compounds, see:
    • 6a Faul MM. Huff BE. Chem. Rev. 2000; 100: 2407
    • 6b Kang EJ. Lee E. Chem. Rev. 2005; 105: 4348
    • 6c Clarke PA. Santos S. Eur. J. Org. Chem. 2006; 2045
    • 6d Lorente A. Lamariano-Merketegi J. Albericio F. Álvarez M. Chem. Rev. 2013; 113: 4567
    • 6e Aho JE. Pihko PM. Rissa TK. Chem. Rev. 2005; 105: 4406
    • 7a Nising CF. Bräse S. Chem. Soc. Rev. 2012; 41: 988
    • 7b Yoneda N. Fukata Y. Asano K. Matsubara S. Angew. Chem. Int. Ed. 2015; 54: 15497
    • 7c Parhi B. Gurjar J. Pramanik S. Midya A. Ghorai P. J. Org. Chem. 2016; 81: 4654
    • 7d Lu Y. Zou G. Zhao G. ACS Catal. 2013; 3: 1356
    • 7e Kobayashi Y. Taniguchi Y. Hayama N. Inokuma T. Takemoto Y. Angew. Chem. Int. Ed. 2013; 52: 11114
    • 7f Hintermann L. Dittmer C. Eur. J. Org. Chem. 2012; 5573
    • 7g Phillips EM. Riedrich M. Scheidt KA. J. Am. Chem. Soc. 2010; 132: 13179
  • 8 Jakab G. Tancon C. Zhang Z. Lippert KM. Schreiner PR. Org. Lett. 2012; 14: 1724
    • 9a Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
    • 9b Zhang Z. Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 9c Serdyuk OV. Heckel CM. Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
    • 9d Connon SJ. Synlett 2009; 354
  • 10 Watanabe K. Yamagiwa N. Torisawa Y. Org. Process Res. Dev. 2007; 11: 251
  • 11 Yoneda N. Matsumoto A. Asano K. Matsubara S. Chem. Lett. 2016; 45: 1300
    • 12a McGarraugh PG. Brenner-Moyer SE. Org. Lett. 2011; 13: 6460
    • 12b Čorić I. Müller S. List B. J. Am. Chem. Soc. 2010; 132: 17370

      For reviews, see:
    • 13a Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 13b Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 13c Adair G. Mukherjee S. List B. Aldrichimica Acta 2008; 41: 31
    • 13d Terada M. Synthesis 2010; 1929
    • 13e Rueping M. Kuenkel A. Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
    • 14a Mandai H. Murota K. Mitsudo K. Suga S. Org. Lett. 2012; 14: 3486
    • 14b Harada S. Kuwano S. Yamaoka Y. Yamada K. Takasu K. Angew. Chem. Int. Ed. 2013; 52: 10227
    • 14c Yamanaka T. Kondoh A. Terada M. J. Am. Chem. Soc. 2015; 137: 1048