Synlett 2018; 29(05): 548-555
DOI: 10.1055/s-0036-1591533
account
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Catalysis for the Reductive ­Functionalization of CO2 with Amines

Xiao-Fang Liu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, 4 Weijin Rd., Tionjin 300071, P. R. of China   Email: heln@nankai.edu.cn
,
Xiao-Ya Li
State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, 4 Weijin Rd., Tionjin 300071, P. R. of China   Email: heln@nankai.edu.cn
,
Chang Qiao
State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, 4 Weijin Rd., Tionjin 300071, P. R. of China   Email: heln@nankai.edu.cn
,
State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, 4 Weijin Rd., Tionjin 300071, P. R. of China   Email: heln@nankai.edu.cn
› Author Affiliations
This work was financially supported by National Key Research and Development Program (2016YFA0602900), National Natural Science Foundation of China (21472103, 21421001, 21421062), the Natural Science Foundation of Tianjin (16JCZDJC39900), and the Ph.D. ­Candidate Research Innovation Fund of the College of Chemistry ­Nankai University (020-96172407).
Further Information

Publication History

Received: 06 December 2017

Accepted after revision: 27 December 2017

Publication Date:
31 January 2018 (online)

Abstract

Reductive functionalization of CO2 with amines and a reductant, which combines both reduction of CO2 and C–N bond formation in one pot to produce versatile chemicals and energy-storage materials such as formamides, aminals, and methylamines that are usually derived from petroleum feedstock, would be appealing and promising. Herein, we give a brief review on recent developments in the titled CO2 chemistry by employing transition-metal-free catalysis, which can be catalogued as below according to the diversified energy content of the products, that is formamides, aminals, and methylamines being consistent with 2-, 4-, and 6-electron reduction of CO2, respectively. Notably, hierarchical reduction of CO2 with amines to afford at least two products, for example, formamides and methylamines, could be realized with the same catalyst through tuning the hydrosilane type, reaction temperature, or CO2 pressure. Finally, the opportunities and challenges of the reductive functionalization of CO2 with amines are also highlighted.

1 Introduction

2 2-Electron Reduction of CO2 to Formamide

3 6-Electron Reduction of CO2 to Methylamine

4 4-Electron Reduction of CO2 to Aminal

5 Hierarchical Reduction of CO2 with Amines

6 Conclusion

 
  • References

    • 1a Liu Q. Wu LP. Jackstell R. Beller M. Nat. Commun. 2015; 6: 5933
    • 1b Zhang Z. Ju T. Ye J.-H. Yu D.-G. Synlett 2017; 28: 741
    • 1c Song Q.-W. Zhou Z.-H. He L.-N. Green Chem. 2017; 19: 3707
  • 2 Mikkelsen M. Jørgensen M. Krebs FC. Energy Environ. Sci. 2010; 3: 43
  • 3 Lescot C. Nielsen DU. Makarov IS. Lindhardt AT. Daasbjerg K. Skrydstrup T. J. Am. Chem. Soc. 2014; 136: 6142
  • 4 Li Y.-N. He L.-N. Liu A.-H. Lang X.-D. Yang Z.-Z. Yu B. Luan C.-R. Green Chem. 2013; 15: 2825
  • 5 Li Y.-N. Ma R. He L.-N. Diao Z.-F. Catal. Sci. Technol. 2014; 4: 1498
  • 6 Heim LE. Konnerth H. Prechtl MH. G. Green Chem. 2017; 19: 2347
  • 7 Park S. Bézier D. Brookhart M. J. Am. Chem. Soc. 2012; 134: 11404
  • 8 Das Neves Gomes C. Jacquet O. Villiers C. Thuéry P. Ephritikhine M. Cantat T. Angew. Chem. Int. Ed. 2012; 51: 187

    • Recent reviews on reductive functionalization of CO2:
    • 9a Tlili A. Blondiaux E. Frogneux X. Cantat T. Green Chem. 2015; 17: 157
    • 9b Klankermayer J. Wesselbaum S. Beydoun K. Leitner W. Angew. Chem. Int. Ed. 2016; 55: 7296
    • 9c Li Y. Cui X. Dong K. Junge K. Beller M. ACS Catal. 2017; 7: 1077
    • 10a Kobayashi K. Nagato S. Kawakita M. Morikawa O. Konishi H. Chem. Lett. 1995; 24: 575
    • 10b Jackson A. Meth-Cohn O. J. Chem. Soc., Chem. Commun. 1995; 1319
  • 11 Gerack C. McElwee-White L. Molecules 2014; 19: 7689
  • 12 Krocher OA. Koppel R. Baiker A. Chem. Commun. 1997; 453
  • 13 Zhang L. Han Z. Zhao X. Wang Z. Ding K. Angew. Chem. Int. Ed. 2015; 54: 6186
  • 14 Liu H. Mei Q. Xu Q. Song J. Liu H. Han B. Green Chem. 2017; 19: 196
  • 15 Daw P. Chakraborty S. Leitus G. Diskin-Posner Y. Ben-David Y. Milstein D. ACS Catal. 2017; 7: 2500
  • 16 Dong K. Razzaq R. Hu Y. Ding K. Top. Curr. Chem. 2017; 375: 23

    • Selected examples for transition-metal-catalyzed N-formylation:
    • 17a Luo R. Lin X. Chen Y. Zhang W. Zhou X. Ji H. ChemSusChem 2017; 10: 1224
    • 17b Motokura K. Takahashi N. Kashiwame D. Yamaguchi S. Miyaji A. Baba T. Catal. Sci. Technol. 2013; 3: 2392
    • 17c Nguyen TV. Q. Yoo W.-J. Kobayashi S. Angew. Chem. Int. Ed. 2015; 54: 9209
  • 18 Bhanage B. Nale D. Synlett 2016; 27: 1413
  • 19 Jacquet O. Das Neves Gomes C. Ephritikhine M. Cantat T. J. Am. Chem. Soc. 2012; 134: 2934
  • 20 Saptal VB. Bhanage BM. ChemSusChem 2016; 9: 1980
  • 21 Chong CC. Kinjo R. Angew. Chem. Int. Ed. 2015; 54: 12116
  • 22 Riduan SN. Ying JY. Zhang Y. J. Catal. 2016; 343: 46
  • 23 Hao L. Zhao Y. Yu B. Yang Z. Zhang H. Han B. Gao X. Liu Z. ACS Catal. 2015; 5: 4989
  • 24 Ke ZG. Hao LD. Gao X. Zhang HY. Zhao YF. Yu B. Yang ZZ. Chen Y. Liu ZM. Chem. Eur. J. 2017; 23: 9721
  • 25 Lv H. Xing Q. Yue C. Lei Z. Li F. Chem. Commun. 2016; 52: 6545
  • 26 Song J. Zhou B. Liu H. Xie C. Meng Q. Zhang Z. Han B. Green Chem. 2016; 18: 3956
  • 27 Zhao T.-X. Zhai G.-W. Liang J. Li P. Hu X.-B. Wu Y.-T. Chem. Commun. 2017; 53: 8046
  • 28 Hao L. Zhang H. Luo X. Wu C. Zhao Y. Liu X. Gao X. Chen Y. Liu Z. J. CO2 Util. 2017; 22: 208
  • 29 Vessally E. Didehban K. Babazadeh M. Hosseinian A. Edjlali L. J. CO2 Util. 2017; 21: 480
  • 30 Jacquet O. Das Neves Gomes C. Ephritikhine M. Cantat T. ChemCatChem 2013; 5: 117
  • 31 Gao X. Yu B. Yang ZZ. Zhao YF. Zhang HG. Hao LD. Han BX. Liu ZM. ACS Catal. 2015; 5: 6648
  • 32 Zhang ZB. Sun QS. Xia CG. Sun W. Org. Lett. 2016; 18: 6316
    • 33a Schönherr H. Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
    • 33b Meyer KD. Saletore Y. Zumbo P. Elemento O. Mason CE. Jaffrey SR. Cell 2012; 149: 1635
  • 34 Tundo P. Selva M. Acc. Chem. Res. 2002; 35: 706
  • 35 Jacquet O. Frogneux X. Das Neves Gomes C. Cantat T. Chem. Sci. 2013; 4: 2127

    • Ru-catalyzed N-methylation with CO2 and H2:
    • 36a Li Y. Fang X. Junge K. Beller M. Angew. Chem. Int. Ed. 2013; 52: 9568
    • 36b Li Y. Sorribes I. Yan T. Junge K. Beller M. Angew. Chem. Int. Ed. 2013; 52: 12156
    • 36c Beydoun K. vom Stein T. Klankermayer J. Leitner W. Angew. Chem. Int. Ed. 2013; 52: 9554
  • 37 González-Sebastián L. Flores-Alamo M. García JJ. Organo­metallics 2015; 34: 763
  • 38 Santoro O. Lazreg F. Minenkov Y. Cavallo L. Cazin CS. J. Dalton Trans. 2015; 44: 18138
  • 39 Cui X. Dai X. Zhang Y. Deng Y. Shi F. Chem. Sci. 2014; 5: 649

    • Selected examples for N-methylation with formic acid as C1 source:
    • 40a Sorribes I. Junge K. Beller M. Chem. Eur. J. 2014; 20: 7878
    • 40b Qiao C. Liu X.-F. Liu X. He L.-N. Org. Lett. 2017; 19: 1490
    • 40c Fu M.-C. Shang R. Cheng W.-M. Fu Y. Angew. Chem. Int. Ed. 2015; 54: 9042
  • 41 Blondiaux E. Pouessel J. Cantat T. Angew. Chem. Int. Ed. 2014; 53: 12186
  • 42 Das S. Bobbink FD. Laurenczy G. Dyson PJ. Angew. Chem. Int. Ed. 2014; 53: 12876
  • 43 Chen WC. Shen JS. Jurca T. Peng CJ. Lin YH. Wang YP. Shih WC. Yap GP. Ong TG. Angew. Chem. Int. Ed. 2015; 54: 15207
  • 44 Yang Z. Yu B. Zhang H. Zhao Y. Ji G. Ma Z. Gao X. Liu Z. Green Chem. 2015; 17: 4189
  • 45 Niu H. Lu L. Shi R. Chiang C.-W. Lei A. Chem. Commun. 2017; 53: 1148
  • 46 Liu X.-F. Qiao C. Li X.-Y. He L.-N. Green Chem. 2017; 19: 1726
  • 47 Goeppert A. Czaun M. Jones J.-P. Surya Prakash GK. Olah GA. Chem. Soc. Rev. 2014; 43: 7995

    • Ru- and Co-based catalytic protocol for the synthesis of dimethoxymethane with CO2 as –CH2– source:
    • 48a Schieweck BG. Klankermayer J. Angew. Chem. Int. Ed. 2017; 56: 10854
    • 48b Thenert K. Beydoun K. Wiesenthal J. Leitner W. Klankermayer J. Angew. Chem. Int. Ed. 2016; 55: 12266
  • 49 Frogneux X. Blondiaux E. Thuéry P. Cantat T. ACS Catal. 2015; 5: 3983
  • 50 Jin G. Werncke CG. Escudié Y. Sabo-Etienne S. Bontemps S. J. Am. Chem. Soc. 2015; 137: 9563
  • 51 Zhu D.-Y. Fang L. Han H. Wang Y. Xia J.-B. Org. Lett. 2017; 19: 4259
  • 52 Das S. Bobbink FD. Bulut S. Soudani M. Dyson PJ. Chem. Commun. 2016; 52: 2497
  • 53 Zhou H. Wang G.-X. Zhang W.-Z. Lu X.-B. ACS Catal. 2015; 5: 6773
    • 54a Liu X.-F. Ma R. Qiao C. Cao H. He L.-N. Chem. Eur. J. 2016; 22: 16489

    • A similar fluoride-catalyzed N-formylation protocol was reported almost simultaneously:
    • 54b Hulla M. Bobbink FD. Das S. Dyson PJ. ChemCatChem 2016; 8: 3338
  • 55 Fang C. Lu C. Liu M. Zhu Y. Fu Y. Lin B.-L. ACS Catal. 2016; 6: 7876
  • 56 Liu XF. Li XY. Qiao C. Fu HC. He LN. Angew. Chem. Int. Ed. 2017; 56: 7425