Subscribe to RSS
DOI: 10.1055/s-0036-1591518
Synthesis of 1,5-Anhydro-d-glycero-d-gluco-heptitol Derivatives as Potential Inhibitors of Bacterial Heptose Biosynthetic Pathways
Publication History
Received: 01 September 2017
Accepted after revision: 12 October 2017
Publication Date:
08 November 2017 (online)
Abstract
A series of 1,5-anhydro-d-glycero-d-gluco-heptitol derivatives have been prepared from 3-O-benzyl-1,2-O-isopropylidene-d-glycero-d-gluco-heptofuranose via conversion into anomeric bromide and thiophenyl derivatives, followed by glycal formation and reductive desulfurization, respectively. Global deprotection of the protected intermediates afforded the 1,5-anhydro derivatives of the d-glycero-d-gluco- and 1,2-dideoxy-d-altro- configuration as well as the 1,5-anhydro-2-deoxy-d-altro-hept-1-enitol. In addition, the 7-O-phosphorylated d-glycero-d-gluco-heptose and its 1,5-anhydro analogue were prepared in good yields utilizing phosphoramidite chemistry. A novel heptitol analogue based on a 1-deoxynojirimycin scaffold was also elaborated via a Wittig-type chain elongation followed by dihydroxylation, separation of the resulting epimers, and global deprotection. The target compounds, however, were not active as inhibitors of the bacterial sedoheptulose-7-phosphate isomerase GmhA.
Key words
heptose - carbohydrates - inhibitor - anhydro-sugar - C6 chain elongation - phosphorylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591518.
- Supporting Information
-
References
- 1 New address: D. Atamanyuk, AB-Science, 3 Avenue George V, 75008, Paris, France.
- 2 New address: N. M. Xavier, Center of Chemistry and Biochemistry, DQB, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 2º Piso, Campo Grande 1749-016 Lisboa, Portugal.
- 3 New address: V. Gerusz, Debiopharm, Rue du Levant 146, CP368, 1920 Martigny, Switzerland.
- 4a Maxson T. Mitchell DA. Tetrahedron 2016; 72: 3609
- 4b Chellat MF. Raguž L. Riedl R. Angew. Chem. Int. Ed. 2016; 55: 6600
- 4c Walsh C. Nat. Rev. Microbiol. 2013; 1: 65
- 4d Schäberle TF. Hack IM. Trends Microbiol. 2014; 22: 165
- 4e Taylor PL. Wright GD. Anim. Health Res. 2008; 9: 237
- 5a Escaich S. Curr. Opin. Chem. Biol. 2008; 12: 400
- 5b Kuo C.-J. Chen J.-W. Chiu H.-C. Teng C.-H. Hsu T.-I. Lu P.-J. Syu W.-J. Wang S.-T. Chou T.-C. Chen C.-S. Frontiers Cell. Infect. Microbiol 2016; 6: 82 ; doi: 10.3389/fcimb.2016.00082
- 5c Loutet SA. Flannagan RS. Kooi C. Sokol PA. Valvano M. J. Bacteriol. 2006; 188: 2073
- 6a Reinhardt A. Wehle M. Geissner A. Crouch E. Kang Y. Yang Y. Anish C. Santer M. Seeberger PH. J. Struct. Biol. 2016; 195: 387
- 6b Gomery K. Müller-Loennies S. Brooks CL. Brade L. Kosma P. Di Padova F. Brade H. Evans SV. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 20877
- 6c Wang H. Head J. Kosma P. Brade H. Müller-Loennies S. Sheikh S. McDonald B. Smith K. Cafarella T. Seaton B. Crouch E. Biochemistry 2008; 47: 710
- 6d Marchetti R. Malinovska L. Lameignère E. Adamova L. De Castro C. Cioci G. Stanetty C. Kosma P. Molinaro A. Wimmerova M. Imberty A. Silipo A. Glycobiol. 2012; 22: 1387
- 7 Raetz CR. Whitfield C. Annu. Rev. Biochem. 2002; 71: 635
- 8 Holst O. In Bacterial lipopolysaccharides . Knirel YA. Valvano M. Springer; Wien: 2011: 21
- 9 Kosma P. Curr. Org. Chem. 2008; 12: 1021
- 10a Butty F. Aucoin M. Morrison L. Ho N. Shaw G. Creuzenet C. Biochemistry 2009; 48: 7764
- 10b McCallum M. Shaw SD. Shaw GS. Creuzenet C. J. Biol. Chem. 2012; 287: 29776
- 11a Lu Q. Yao Q. Xu Y. Li L. Li S. Liu Y. Gao W. Niu M. Sharon M. Ben-Nissan G. Zamyatina A. Liu X. Chen S. Shao F. Cell Host Microbe 2014; 16: 351
- 11b Yao Q. Lu Q. Wan X. Song F. Xu Y. Hu M. Zamyatina A. Liu X. Huang N. Zhu P. Shao F. eLife 2014; 3: e03714 ; doi: 10.7554/eLife.03714
- 11c Benz I. Schmidt MA. Mol. Microbiol. 2001; 40: 1403
- 12a Eidels L. Osborn MJ. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 1673
- 12b Valvano M. Messner P. Kosma P. Microbiol. 2002; 148: 1979 ; and references cited therein
- 12c For the expansion of the abbreviations, see: Kneidinger B. Marolda C. Graninger M. Zamyatina A. McArthur F. Kosma P. Valvano M. Messner P. J. Bacteriol. 2002; 184: 363
- 13 Gaudet RG. Sintsova A. Buckwalter CM. Leung N. Cochrane A. Li J. Cox A. Moffat J. Gray-Owen SD. Science 2016; 348: 1251
- 14 Zamyatina A. Gronow S. Oertelt C. Puchberger M. Brade H. Kosma P. Angew. Chem. Int. Ed. 2000; 39: 4150
- 15a Yu C.-K. Wang C.-J. Chew Y. Wang P.-C. Yin H.-S. Kao M.-C. Biochem. Biophys. Res. Commun. 2016; 477: 794
- 15b Do H. Yun J.-S. Lee CW. Choi YJ. Kim H.-Y. Kim Y.-J. Park H. Chang JH. Lee JH. Mol. Cells 2015; 38: 1086
- 15c Taylor PL. Blakeley KM. de Leon GP. Walker JR. McArthur F. Evdokimova E. Zhang K. Valvano MA. Wright GD. Junop MS. J. Biol. Chem. 2008; 283: 2835
- 15d Harmer NJ. Mol. Biol. 2010; 400: 379
- 15e Vivoli M. Isupov MN. Nocholas R. Hill A. Scott AE. Kosma P. Prior JL. Harmer NJ. Chem. Biol. 2015; 22: 1622
- 16 Coleman WG. Leive L. J. Bacteriol. 1979; 139: 899
- 17a Taylor PL. Blakeley KM. de Leon GP. Walker JR. McArthur F. Evdokimova E. Zhang K. Valvano MA. Wright GD. Junop MS. J. Biol. Chem. 2008; 283: 2835
- 17b Desroy N. Denis A. Oliveira C. Atamanyuk D. Briet S. Faivre F. Le Fralliec G. Bonvin Y. Oxoby M. Escaich S. Floquet S. Drocourt E. Vongsouthi V. Durant L. Moreau F. Verhey TB. Lee T.-W. Junop MS. Gerusz V. J. Med. Chem. 2013; 56: 1418
- 17c Lee T. Verhey TB. Antiperovitch PA. Atamanyuk D. Desroy N. Oliveira C. Denis A. Gerusz V. Drocourt E. Loutet SA. Hamad MA. Stanetty C. Andres SN. Sugiman-Marangos S. Kosma P. Valvano M. Moreau F. Junop MS. J. Med. Chem. 2013; 56: 1405
- 17d De Leon GP. Elowe NH. Koteva KP. Valvano MA. Wright GD. Chem. Biol. 2006; 13: 437
- 18 Durka M. Tikad A. Périon R. Bosco M. Andaloussi M. Floquet S. Malacain E. Moreau F. Oxoby M. Gerusz V. Vincent SP. Chem. Eur. J. 2011; 17: 11305
- 19 Brimacombe JS. Kabir AK. M. S. Carbohydr. Res. 1986; 150: 35
- 20 Zamyatina A. Puchberger M. Graziani A. Gronow S. Hofinger A. Kosma P. Carbohydr. Res. 2003; 338: 2571
- 21 Richtmyer NK. Carr CJ. Hudson CS. J. Am. Chem. Soc. 1943; 65: 1477
- 22 Bannwarth W. Trzeciak A. Helv. Chim. Acta 1987; 70: 175
- 23 Wessel H.-P. Iversen T. Bundle DR. J. Chem. Soc., Perkin Trans. 1 1985; 2247
- 24 Khanna IK. Koszyk FJ. Stealey MA. Weier RM. Julien J. Mueller RA. Rao SN. Swenton L. J. Carbohydr. Chem. 1995; 14: 843
- 25 Cha JK. Christ WJ. Kishi Y. Tetrahedron 1984; 40: 2247
- 26a Van Straten NC. R. Kriek NM. A. J. Timmers CM. Wigchert SC. M. van der Marel GA. van Boom JH. J. Carbohydr. Chem. 1997; 16: 947
- 26b Crich D. Banerjee A. Org. Lett. 2005; 7: 1395
- 27 Chan T.-H. Chang Y.-F. Hsu J.-J. Cheng W.-C. Eur. J. Org. Chem. 2010; 5555
- 28 Dale JA. Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
- 29 Lauritsen A. Madsen R. Org. Biomol. Chem. 2006; 4: 2898
- 30 Lundt I. Madsen R. Synthesis 1995; 787
- 31a Desroy N. Moreau F. Briet S. Le Fralliec G. Floquet S. Durant L. Vongsouthi V. Gerusz V. Denis A. Escaich S. Bioorg. Med. Chem. 2009; 17: 1276
- 31b Gerusz V. Vincent S. Oxoby M. Atamanyuk D. Moreau F. Andaloussi M. Tikad A. Patent PCT Int. Appl. WO 2012/073214 A2, 2012
- 32a Stütz AE. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Wiley-VCH; Weinheim: 1999
- 32b Zou W. Curr. Top. Med. Chem. 2005; 5: 1363
- 32c Asano N. Glycobiol. 2003; 13: 93R
- 33 Dhavale DD. Kumar KA. A. Chaudhari VD. Sharma T. Sabharwal SG. Reddy JP. Org. Biomol. Chem. 2005; 3: 3720
- 34 Harris RK. Becker ED. Cabral de Menezes SM. Goodfellow R. Granger P. Pure Appl. Chem. 2001; 73: 1795
For example, see:
See, for example: