Synthesis 2018; 50(05): 956-967
DOI: 10.1055/s-0036-1590986
short review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Asymmetric Allylation of Carbonyl Compounds with Unsaturated Hydrocarbons

Pu-Sheng Wang
a  Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. of China
,
Meng-Lan Shen
a  Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. of China
,
Liu-Zhu Gong*
a  Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. of China
b  Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), P. R. of China   Email: [email protected]
› Author Affiliations
We are grateful for financial support from NSFC (21602214), and the China Postdoctoral Science Foundation (No. 2015M580534 and 2017T100449).
Further Information

Publication History

Received: 08 October 2017

Accepted after revision: 14 November 2017

Publication Date:
21 December 2017 (online)


Abstract

The asymmetric allylation of carbonyl compounds is an important process for the formation of carbon–carbon bonds, generating optically active homoallylic alcohols that are versatile building blocks with widespread applications in organic synthesis. The use of readily available unsaturated hydrocarbons as allylating reagents in the transition-metal-catalyzed asymmetric allylation has received increasing interest as either a step- or an atom-economy alternative. This review summarizes transition-metal-catalyzed enantioselective allylations on the basis of the ‘indirect’ and ‘direct’ use of simple unsaturated hydrocarbons (include dienes, allenes, alkynes, and alkenes) as allylating reagents, with emphasis on highlighting conceptually novel reactions.

1 Introduction

2 ‘Indirect’ Use of Unsaturated Hydrocarbons in Asymmetric Allylation of Carbonyl Compounds

2.1 Enantioselective Allylation with 1,3-Dienes

2.2 Enantioselective Allylation with Allenes

2.3 Enantioselective Allylation with Alkenes

3 ‘Direct’ Use of Unsaturated Hydrocarbons in Asymmetric Allylation of Carbonyl Compounds

3.1 Enantioselective Allylation with 1,3-Dienes

3.2 Enantioselective Allylation with Allenes

3.3 Enantioselective Allylation with Alkynes

3.4 Enantioselective Allylation with Alkenes

4 Conclusions

 
  • References

    • 1a Denmark SE. Fu JP. Chem. Rev. 2003; 103: 2763
    • 1b Bower JF. Kim IS. Patman RL. Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 34
    • 1c Yus M. Gonzalez-Gomez JC. Foubelo F. Chem. Rev. 2011; 111: 7774
    • 1d Huo H.-X. Duvall JR. Huang M.-Y. Hong R. Org. Chem. Front. 2014; 1: 303
    • 1e Kim SW. Zhang W. Krische MJ. Acc. Chem. Res. 2017; 50: 2371
  • 2 Yus M. Gonzalez-Gomez JC. Foubelo F. Chem. Rev. 2013; 113: 5595
  • 3 Corey EJ. Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
  • 4 Lu Z. Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
  • 5 Han SB. Kim IS. Krische MJ. Chem. Commun. 2009; 7278
  • 6 Kennedy JW. J. Hall DG. Angew. Chem. Int. Ed. 2003; 42: 4732
    • 7a Hall DG. Synlett 2007; 1644
    • 7b Diner C. Szabo KJ. J. Am. Chem. Soc. 2017; 139: 2
  • 8 Denmark SE. Fu J. Chem. Commun. 2003; 167
  • 9 Paull DH. Abraham CJ. Scerba MT. Alden-Danforth E. Lectka T. Acc. Chem. Res. 2008; 41: 655
    • 10a Bäckvall J.-E. Chinchilla R. Nájera C. Yus M. Chem. Rev. 1998; 98: 2291
    • 10b Mehta G. Uma R. Acc. Chem. Res. 2000; 33: 278
    • 10c Deagostino A. Prandi C. Zavattaro C. Venturello P. Eur. J. Org. Chem. 2006; 2463
    • 10d Sherburn M. Mackay E. Synthesis 2014; 47: 1
    • 11a Zimmerman HE. Traxler MD. J. Am. Chem. Soc. 1957; 79: 1920
    • 11b Li Y. Houk KN. J. Am. Chem. Soc. 1989; 111: 1236
  • 12 Kobayashi S. Nishio K. J. Org. Chem. 1994; 59: 6620
  • 13 Kitayama K. Tsuji H. Uozumi Y. Hayashi T. Tetrahedron Lett. 1996; 37: 4169
  • 14 Han JW. Tokunaga N. Hayashi T. Helv. Chim. Acta 2002; 85: 3848
  • 15 Park HS. Han JW. Shintani R. Hayashi T. Tetrahedron: Asymmetry 2013; 24: 418
  • 16 Burks HE. Kliman LT. Morken JP. J. Am. Chem. Soc. 2009; 131: 9134
  • 17 Kliman LT. Mlynarski SN. Ferris GE. Morken JP. Angew. Chem. Int. Ed. 2012; 51: 521
  • 18 Ferris GE. Hong K. Roundtree IA. Morken JP. J. Am. Chem. Soc. 2013; 135: 2501
  • 19 Tao ZL. Adili A. Shen HC. Han ZY. Gong LZ. Angew. Chem. Int. Ed. 2016; 55: 4322
    • 20a Brak K. Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 20b Mahlau M. List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 20c Lacour J. Moraleda D. Chem. Commun. 2009; 7073
    • 20d Mahlau M. List B. Isr. J. Chem. 2012; 52: 630
    • 20e Phipps RJ. Hamilton GL. Toste FD. Nat. Chem. 2012; 4: 603
  • 21 Nelson HM. Williams BD. Miro J. Toste FD. J. Am. Chem. Soc. 2015; 137: 3213
    • 22a Hall DG. Pure Appl. Chem. 2008; 80: 913
    • 22b Hoffmann RW. Niel G. Schlapbach A. Pure Appl. Chem. 1990; 62: 1993
    • 22c Hoffmann RW. Pure Appl. Chem. 1988; 60: 123
  • 23 Shen H.-C. Wang P.-S. Tao Z.-L. Han Z.-Y. Gong L.-Z. Adv. Synth. Catal. 2017; 359: 2383
  • 24 Suginome M. Ohmura T. Miyake Y. Mitani S. Ito Y. Murakami M. J. Am. Chem. Soc. 2003; 125: 11174
    • 25a Suginome M. Ohmori Y. Ito Y. J. Am. Chem. Soc. 2001; 123: 4601
    • 25b Huang H. Panek JS. J. Am. Chem. Soc. 2000; 122: 9836
    • 25c Markó IE. Mekhalfia A. Tetrahedron Lett. 1992; 33: 1799
  • 26 Pelz NF. Woodward AR. Burks HE. Sieber JD. Morken JP. J. Am. Chem. Soc. 2004; 126: 16328
  • 27 Woodward AR. Burks HE. Chan LM. Morken JP. Org. Lett. 2005; 7: 5505
    • 28a Jensen T. Fristrup P. Chem. Eur. J. 2009; 15: 9632
    • 28b Liu G. Wu Y. Top. Curr. Chem. 2010; 292: 195
    • 28c Engelin CJ. Fristrup P. Molecules 2011; 16: 951
    • 28d Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
    • 28e Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 28f Li BJ. Shi ZJ. Chem. Soc. Rev. 2012; 41: 5588
    • 28g Liron F. Oble J. Lorion MM. Poli G. Eur. J. Org. Chem. 2014; 5863
    • 28h Zheng C. You SL. RSC Adv. 2014; 4: 6173
    • 28i Newton CG. Wang SG. Oliveira CC. Cramer N. Chem. Rev. 2017; 107: 8908
  • 29 Deng HP. Eriksson L. Szabo KJ. Chem. Commun. 2014; 50: 9207
    • 30a Trost BM. Hansmann MM. Thaisrivongs DA. Angew. Chem. Int. Ed. 2012; 51: 4950
    • 30b Trost BM. Thaisrivongs DA. Hansmann MM. Angew. Chem. Int. Ed. 2012; 51: 11522
    • 30c Wang PS. Lin HC. Zhai YJ. Han ZY. Gong LZ. Angew. Chem. Int. Ed. 2014; 53: 12218
  • 31 Xiong T. Li Y. Mao L. Zhang Q. Zhang Q. Chem. Commun. 2012; 48: 2246
  • 32 Tao ZL. Li XH. Han ZY. Gong LZ. J. Am. Chem. Soc. 2015; 137: 4054
  • 33 Jain P. Antilla JC. J. Am. Chem. Soc. 2010; 132: 11884
  • 34 Ramachandran PV. Pratihar D. Biswas D. Srivastava A. Ram Reddy MV. Org. Lett. 2004; 6: 481
  • 35 Li LL. Tao ZL. Han ZY. Gong LZ. Org. Lett. 2017; 19: 102
  • 36 Sato Y. Saito N. Mori M. J. Am. Chem. Soc. 2000; 122: 2371
  • 37 Yang Y. Perry IB. Lu G. Liu P. Buchwald SL. Science (Washington, D. C.) 2016; 353: 144
  • 38 Zbieg JR. Moran J. Krische MJ. J. Am. Chem. Soc. 2011; 133: 10582
  • 39 Zbieg JR. Yamaguchi E. McInturff EL. Krische MJ. Science (Washington, D. C.) 2012; 336: 324
  • 40 McInturff EL. Yamaguchi E. Krische MJ. J. Am. Chem. Soc. 2012; 134: 20628
  • 41 Nguyen KD. Herkommer D. Krische MJ. J. Am. Chem. Soc. 2016; 138: 14210
  • 42 Han SB. Kim IS. Han H. Krische MJ. J. Am. Chem. Soc. 2009; 131: 6916
  • 43 Holmes M. Nguyen KD. Schwartz LA. Luong T. Krische MJ. J. Am. Chem. Soc. 2017; 139: 8114
  • 44 Haydl AM. Breit B. Liang T. Krische MJ. Angew. Chem. Int. Ed. 2017; 56: 11312
  • 45 Liang T. Nguyen KD. Zhang W. Krische MJ. J. Am. Chem. Soc. 2015; 137: 3161
  • 46 Liang T. Zhang W. Chen TY. Nguyen KD. Krische MJ. J. Am. Chem. Soc. 2015; 137: 13066
  • 47 Liang T. Zhang W. Krische MJ. J. Am. Chem. Soc. 2015; 137: 16024
  • 48 Wei XF. Xie XW. Shimizu Y. Kanai M. J. Am. Chem. Soc. 2017; 139: 4647