Synthesis 2017; 49(18): 4111-4123
DOI: 10.1055/s-0036-1590966
short review
© Georg Thieme Verlag Stuttgart · New York

Axially Chiral Shape-Persistent Encapsulating Agents

Sandra Míguez-Lago
Departamento de Química Orgánica, Universidade de Vigo, Edificio de Ciencias Experimentais, Campus Lagoas-Marcosende, Vigo, 36310, Spain   Email: mcid@uvigo.es   Email: sandra.miguez@uvigo.es
,
Departamento de Química Orgánica, Universidade de Vigo, Edificio de Ciencias Experimentais, Campus Lagoas-Marcosende, Vigo, 36310, Spain   Email: mcid@uvigo.es   Email: sandra.miguez@uvigo.es
› Author Affiliations
Financial support from Spanish Government and Xunta de Galicia is acknowledged (CTQ2014-58629-R and GPC2014/066, respectively).
Further Information

Publication History

Received: 15 May 2017

Accepted after revision: 26 June 2017

Publication Date:
11 August 2017 (online)


Abstract

In this review is presented the results of investigations during the last two decades on molecular recognition processes, mainly chiral host–guest systems insofar as they deal with intermolecular recognition events. Attention is devoted to those systems involving chiral hosts whose chirality does not arise from the presence of a chiral center and that possess a defined cavity to accommodate guests. Thus, the scope of this short review is restricted to chiral containers in which size, shape, and functionality are critical aspects, while those examples involving chirality transfer processes are excluded. The systems covered are those with axial chirality, including helical chirality, in which the chirality, that can be inherent or induced by steric interactions, originates from the 3D helical array of substituents. More specifically, the focus is on both macrocycles that bear open cavities and molecular cages with more enclosed voids.

1 Introduction

2 Encapsulating Agents: Macrocycles

3 Encapsulating Agents: Molecular Cages

4 Conclusions

 
  • References

  • 1 Mecozzi S. Rebek JJr. Chem. Eur. J. 1998; 4: 1016
  • 2 Schneider HJ. Angew. Chem. Int. Ed. 2009; 48: 3924
  • 3 Houk KN. Leach AG. Kim SP. Zhang X. Angew. Chem. Int. Ed. 2003; 42: 4872
  • 4 Cao L. Šekutor M. Zavalij PY. Mlinarić-Majerski K. Glaser R. Isaacs L. Angew. Chem. Int. Ed. 2014; 53: 988
  • 5 Steed JW. Atwood JL. Supramolecular Chemistry . 2nd ed. John Wiley & Sons; Chichester: 2009
  • 6 Hembury GA. Borovkov VV. Inoue Y. Chem. Rev. 2008; 108: 1
  • 7 Saito N. Terakawa R. Yamaguchi M. Chem. Eur. J. 2014; 20: 5601
  • 8 Eliel EL. Wilen SH. Doyle MP. Basic Stereochemistry of Organic Compounds . Wiley Interscience; New York: 2008
  • 9 Lahoz IR. Castro-Fernandez S. Navarro-Vázquez A. Alonso-Gómez JL. Cid MM. Chirality 2014; 26: 563
  • 10 Ye J. Ma S. Org. Chem. Front. 2014; 1: 1210
  • 11 Castro-Fernandez S. Cid MM. López CS. Alonso-Gómez JL. J. Phys. Chem. A 2015; 119: 1747
  • 12 Shen Y. Chen C.-F. Chem. Rev. 2012; 112: 1463
  • 13 Chatelet B. Joucla L. Padula D. Bari LD. Pilet G. Robert V. Dufaud V. Dutasta J.-P. Martinez A. Org. Lett. 2015; 17: 500
  • 14 Wencel-Delord J. Panossian A. Leroux FR. Colobert F. Chem. Soc. Rev. 2015; 44: 3418
  • 15 Rotzler J. Gsellinger H. Bihlmeier A. Gantenbein M. Vonlanthen D. Häussinger D. Klopper W. Mayor M. Org. Biomol. Chem. 2013; 11: 110
  • 16 Huang S.-L. Jin G.-X. Luo H.-K. Hor TS. A. Chem. Asian J. 2014; 10: 24
  • 17 Ramaiah D. Neelakandan PP. Nair AK. Avirah RR. Chem. Soc. Rev. 2010; 39: 4158
  • 18 Kawase T. Daifuku Y. Hirao Y. Matsumoto K. Kurata H. Kubo T. C. R. Chim 2009; 12: 403
  • 19 Liu Y. Singharoy A. Mayne CG. Sengupta A. Raghavachari K. Schulten K. Flood AH. J. Am. Chem. Soc. 2016; 138: 4843
  • 20 Ziegler M. Davis AV. Johnson DW. Raymond KN. Angew. Chem. Int. Ed. 2003; 42: 665
  • 21 Pluth MD. Raymond KN. Chem. Soc. Rev. 2007; 36: 161
  • 22 Schalley C. Analytical Methods in Supramolecular Chemistry. Wiley-VCH; Weinheim: 2007
  • 23 Cohen Y. Avram L. Evan Salem T. Frish L. In Diffusion NMR in Supramolecular Chemistry . Wiley-VCH; Weinheim: 2006: 163
  • 24 Zhang D. Mulatier J.-C. Cochrane JR. Guy L. Gao G. Dutasta J.-P. Martinez A. Chem. Eur. J. 2016; 22: 8038
  • 25 Pescitelli G. Di Bari L. Berova N. Chem. Soc. Rev. 2014; 43: 5211
  • 26 Wolf C. Bentley KW. Chem. Soc. Rev. 2013; 42: 5408
  • 27 Castiglioni E. Abbate S. Longhi G. Chirality 2011; 23: 711
  • 28 Barron LD. Zhu F. Hecht L. Tranter GE. Isaacs NW. J. Mol. Struct. 2007; 834–836: 7
  • 29 Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules. Berova N. Polavarapu PL. Nakanishi K. Woody RW. John Wiley & Sons; Hoboken: 2012
  • 30 Toro C. De Boni L. Lin N. Santoro F. Rizzo A. Hernández FE. Chem. Eur. J. 2010; 16: 3504
  • 31 Padula D. Lahoz IR. Diaz C. Hernández FE. Di Bari L. Rizzo A. Santoro F. Cid MM. Chem. Eur. J. 2015; 21: 12136
  • 32 Leung DH. Bergman RG. Raymond KN. J. Am. Chem. Soc. 2008; 130: 2798
  • 33 Pieraccini S. Masiero S. Ferrarini A. Spada GP. Chem. Soc. Rev. 2011; 40: 258
  • 34 Liu M. Zhang L. Wang T. Chem. Rev. 2015; 115: 7304
  • 35 Chirality in Supramolecular Assemblies: Causes and Consequences. Keene FR. John Wiley & Sons; Chichester: 2017
  • 36 Forgan RS. Sauvage J.-P. Stoddart JF. Chem. Rev. 2011; 111: 5434
  • 37 Chambron JC. Keene FR. In Chirality in Supramolecular Assemblies: Causes and Consequences . Keene FR. Wiley; Chichester: 2016: 1-43
  • 38 Rickhaus M. Mayor M. Juricek M. Chem. Soc. Rev. 2016; 45: 1542
  • 39 Huang Z. Kang SK. Banno M. Yamaguchi T. Lee D. Seok C. Yashima E. Lee M. Science (Washington, DC) 2012; 337: 1521
  • 40 Marcos V. Stephens AJ. Jaramillo-Garcia J. Nussbaumer AL. Woltering SL. Valero A. Lemonnier J.-F. Vitorica-Yrezabal IJ. Leigh DA. Science (Washington, D. C.) 2016; 352: 1555
  • 41 Vreshch V. El Sayed Moussa M. Nohra B. Srebro M. Vanthuyne N. Roussel C. Autschbach J. Crassous J. Lescop C. Réau R. Angew. Chem. Int. Ed. 2013; 52: 1968
  • 42 He Z. Wang E. Lam JW. Y. Li Y. Lin Z. Tang BZ. ChemPlusChem 2015; 80: 1245
  • 43 Nakanishi W. Matsuno T. Ichikawa J. Isobe H. Angew. Chem. Int. Ed. 2011; 50: 6048
  • 44 Nakamura K. Okubo H. Yamaguchi M. Org. Lett. 2001; 3: 1097
  • 45 Sugiura H. Takahira Y. Yamaguchi M. J. Org. Chem. 2005; 70: 5698
  • 46 Takahira Y. Sugiura H. Yamaguchi M. J. Org. Chem. 2006; 71: 763
  • 47 Saiki Y. Nakamura K. Nigorikawa Y. Yamaguchi M. Angew. Chem. Int. Ed. 2003; 42: 5190
  • 48 Droz AS. Neidlein U. Anderson S. Seiler P. Diederich F. Helv. Chim. Acta 2001; 84: 2243
  • 49 Droz AS. Diederich F. J. Chem. Soc., Perkin Trans. 1 2000; 4224
  • 50 Neidlein U. Diederich F. Chem. Commun. 1996; 1493
  • 51 Orita A. An D.-L. Nakano T. Yaruva J. Ma N. Otera J. Chem. Eur. J. 2002; 8: 2005
  • 52 Zhang G.-W. Li P.-F. Meng Z. Wang H.-X. Han Y. Chen C.-F. Angew. Chem. Int. Ed. 2016; 55: 5304
  • 53 Youdim MB. H. Gross A. Finberg JP. M. Brit. J. Pharmacol. 2001; 132: 500
  • 54 McGarry JD. Brown NF. Eur. J. Biochem. 1997; 244: 1
  • 55 Shinde GB. Niphade NC. Deshmukh SP. Toche RB. Mathad VT. Org. Process. Res. Dev. 2011; 15: 455
  • 56 Odermatt SS. Alonso-Gómez JL. J. Seiler PP. Cid MM. M. Diederich FF. Angew. Chem. Int. Ed. 2005; 44: 5074
  • 57 Leclère M. Fallis AG. Angew. Chem. Int. Ed. 2008; 47: 568
  • 58 Matsubara H. Oguri S.-Y. Asano K. Yamamoto K. Chem. Lett. 1999; 28: 431
  • 59 Coluccini C. Dondi D. Caricato M. Taglietti A. Boiocchi M. Pasini D. Org. Biomol. Chem. 2010; 8: 1640
  • 60 Caricato M. Coluccini C. Dondi D. Vander Griend DA. Pasini D. Org. Biomol. Chem. 2010; 8: 3272
  • 61 Wehner M. Schrader T. Finocchiaro P. Failla S. Consiglio G. Org. Lett. 2000; 2: 605
  • 62 Consiglio GA. Failla S. Finocchiaro P. Marchetti F. J. Supramol. Chem. 2002; 2: 293
  • 63 Abrahams BF. Price DJ. Robson R. Angew. Chem. Int. Ed. 2006; 45: 806
  • 64 Tejeda A. Oliva AI. Simón L. Grande M. Morán JR. Tetrahedron Lett. 2000; 41: 4563
  • 65 Ema T. Hamada K. Sugita K. Nagata Y. Sakai T. Ohnishi A. J. Org. Chem. 2010; 75: 4492
  • 66 Takaishi K. Yabe T. Uchiyama M. Yokoyama A. Tetrahedron 2014; 70: 730
  • 67 Marchand AP. Chong H.-S. Ganguly B. Tetrahedron: Asymmetry 1999; 10: 4695
  • 68 Merten C. Hyun MH. Xu Y. Chirality 2013; 25: 294
  • 69 Yang L. Qin S. Su X. Yang F. You J. Hu C. Xie R. Lan J. Org. Biomol. Chem. 2010; 8: 339
  • 70 Pu L. Acc. Chem. Res. 2012; 45: 150
  • 71 Rajakumar P. Srisailas M. Tetrahedron Lett. 2003; 44: 2885
  • 72 Rajakumar P. Srisailas M. Tetrahedron 2001; 57: 9749
  • 73 Rajakumar P. Srisailas M. Tetrahedron 2003; 59: 5373
  • 74 Rajakumar P. Selvam S. Shanmugaiah V. Mathivanan N. Bioorg. Med. Chem. Lett. 2007; 17: 5270
  • 75 Rajakumar P. Raja R. Selvam S. Rengasamy R. Nagaraj S. Bioorg. Med. Chem. Lett. 2009; 19: 3466
  • 76 Danjo H. Hirata K. Yoshigai S. Azumaya I. Yamaguchi K. J. Am. Chem. Soc. 2009; 131: 1638
  • 77 Shibata T. Chiba T. Hirashima H. Ueno Y. Endo K. Heteroat. Chem. 2011; 22: 363
  • 78 Lahoz IR. Navarro-Vázquez A. Alonso-Gomez JL. Cid MM. Eur. J. Org. Chem. 2014; 1915
  • 79 Alonso-Gómez JL. Navarro-Vázquez A. Cid MM. Chem. Eur. J. 2009; 15: 6495
  • 80 Lahoz IR. I. Navarro-Vázquez AA. Llamas-Saiz AL. A. Alonso-Gómez JL. J. Cid MM. Chem. Eur. J. 2012; 18: 13836
  • 81 Castro-Fernandez S. Lahoz IR. Llamas-Saiz AL. Alonso-Gómez JL. Cid MM. Navarro-Vázquez A. Org. Lett. 2014; 16: 1136
  • 82 Castro-Fernández S., García-Río L., Silva López C., Cid M. M.; manuscript submitted.
  • 83 Aranda Perez AI. Biet T. Graule S. Agou T. Lescop C. Branda NR. Crassous J. Réau R. Chem. Eur. J. 2011; 17: 1337
  • 84 Bunzen J. Bruhn T. Bringmann G. Lützen A. J. Am. Chem. Soc. 2009; 131: 3621
  • 85 Théveau L. Bellini R. Dydio P. Szabo Z. van der Werf A. Afshin Sander R. Reek JN. H. Moberg C. Organometallics 2016; 35: 1956
  • 86 Agnes M. Nitti A. Vander Griend DA. Dondi D. Merli D. Pasini D. Chem. Commun. 2016; 52: 11492
  • 87 Míguez-Lago S. Llamas-Saiz AL. Cid MM. Alonso-Gómez JL. Chem. Eur. J. 2015; 21: 18085
  • 88 Míguez-Lago S. Cid MM. Alonso-Gómez JL. Eur. J. Org. Chem. 2016; 5716
  • 89 Ren L. Zhang J. Hardy CG. Ma S. Tang C. Macromol. Rapid Commun. 2012; 33: 510
  • 90 Inagaki T. Mochida T. Takahashi M. Kanadani C. Saito T. Kuwahara D. Chem. Eur. J. 2012; 18: 6795
  • 91 Zhang J. Chen YP. Miller KP. Ganewatta MS. Bam M. Yan Y. Nagarkatti M. Decho AW. Tang C. J. Am. Chem. Soc. 2014; 136: 4873
  • 92 Vanicek S. Kopacka H. Wurst K. Vergeiner S. Oehninger L. Ott I. Bildstein B. Z. Anorg. Allg. Chem. 2015; 641: 1282
  • 93 Wei J. Ren L. Tang C. Su Z. Polym. Chem. 2014; 5: 6480
  • 94 Hintermann L. Xiao L. Labonne A. Englert U. Organometallics 2009; 28: 5739
  • 95 Gropp C. Trapp N. Diederich F. Angew. Chem. Int. Ed. 2016; 55: 14444
  • 96 Rajakumar P. Srisailas M. Tetrahedron Lett. 2002; 43: 1909
  • 97 Lefevre S. Zhang D. Godart E. Jean M. Vanthuyne N. Mulatier J.-C. Dutasta J.-P. Guy L. Martinez A. Chem. Eur. J. 2016; 22: 2068
  • 98 Perraud O. Raytchev PD. Martinez A. Dutasta J.-P. Chirality 2010; 22: 885
  • 99 Gautier A. Mulatier J.-C. Crassous J. Dutasta J.-P. Org. Lett. 2005; 7: 1207
  • 100 Bolm C. Coord. Chem. Rev. 2003; 237: 245
  • 101 Bolm C. Bienewald F. Angew. Chem., Int. Ed. Engl. 1996; 34: 2640
  • 102 Cogan DA. Liu G. Kim K. Backes BJ. Ellman JA. J. Am. Chem. Soc. 1998; 120: 8011
  • 103 Crans DC. Smee JJ. Gaidamauskas E. Yang L. Chem. Rev. 2004; 104: 849
  • 104 Ruiz EJ. Sears DN. Pines A. Jameson CJ. J. Am. Chem. Soc. 2006; 128: 16980
  • 105 Soulard P. Asselin P. Cuisset A. Avilés-Moreno JR. Huet TR. Petitprez D. Demaison J. Freedman TB. Cao X. Nafie LA. Crassous J. Phys. Chem. Chem. Phys. 2006; 8: 79
  • 106 Xu D. Warmuth R. J. Am. Chem. Soc. 2008; 130: 7520
  • 107 Beaudoin D. Rominger F. Mastalerz M. Angew. Chem. Int. Ed. 2017; 56: 1244
  • 108 Gidron O. Ebert M.-O. Trapp N. Diederich F. Angew. Chem. Int. Ed. 2014; 53: 13614
  • 109 Gidron O. Jirásek M. Wörle M. Diederich F. Chem. Eur. J. 2016; 22: 16172
  • 110 Bringmann G. Breuning M. Pfeifer R.-M. Schreiber P. Tetrahedron: Asymmetry 2003; 14: 2225
  • 111 Klein C. Gütz C. Bogner M. Topić F. Rissanen K. Lützen A. Angew. Chem. Int. Ed. 2014; 53: 3739
  • 112 Ye Y. Cook TR. Wang S.-P. Wu J. Li S. Stang PJ. J. Am. Chem. Soc. 2015; 137: 11896
  • 113 Claessens CG. Torres T. J. Am. Chem. Soc. 2002; 124: 14522