Synthesis 2018; 50(01): 84-101
DOI: 10.1055/s-0036-1590952
feature
© Georg Thieme Verlag Stuttgart · New York

Approaches to the Synthesis of Highly Substituted Aromatic and Fused Rings: Metal-Catalysed versus Thermal Cyclisation

Philip J. Parsons*
a  Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK   Email: p.parsons@imperial.ac.uk
,
Lewis A. T. Allen
a  Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK   Email: p.parsons@imperial.ac.uk
,
Daniel R. Jones
a  Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK   Email: p.parsons@imperial.ac.uk
,
Alex C. Padgham
a  Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK   Email: p.parsons@imperial.ac.uk
,
James A. Pryke
b  Division of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
,
Joseph McKenna
b  Division of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
,
Daniel O’Reilly
a  Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK   Email: p.parsons@imperial.ac.uk
› Author Affiliations
A Parsons Scholarship was received by J.A.P. and L.A.T.A., with further funding from Drs. Bader (L.A.T.A.) and Anacor (J.A.P.). An Imperial College PhD Scholarship funded work completed by D.R.J. (EPSRC: 1507589). We also gratefully acknowledge the Bader scholarship received by A.C.P.
Further Information

Publication History

Received: 18 September 2017

Accepted after revision: 13 October 2017

Publication Date:
27 November 2017 (online)


Dedicated to Dr. Alfred Bader on the occasion of his 93rd birthday and in memory of Oxana Bennett

Abstract

A domino reaction has been used for the construction of lactonamycin derivatives. This research led to a comparison study between palladium-mediated cascade cyclisations and thermal alkyne [2+2+2] cyclisations. A palladium-mediated cyclisation of alkenyl bromides with alkynes and furans has been shown to furnish highly substituted aromatic rings. Penta- and hexasubstituted aromatic rings have also been prepared by the thermolysis of suitably substituted alkynes under microwave conditions. Tetrasubstituted pyridines can also be prepared using nitriles instead of alkynes. This work will provide a new and interesting array of drug templates; mechanistic details are discussed for both reaction series.

Supporting Information

 
  • References

  • 1 Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
  • 2 Tietze LF. Chem. Rev. 1996; 96: 115
  • 3 Tietze LF. Beifuss U. Angew. Chem., Int. Ed. Engl. 1993; 32: 131
    • 4a Winkler JD. Axten JM. J. Am. Chem. Soc. 1998; 120: 6425
    • 4b Boto A. Freire R. Hernández R. Suárez E. Rodríguez MS. J. Org. Chem. 1997; 62: 2975
    • 4c Tietze L.-F. Angew. Chem., Int. Ed. Engl. 1983; 22: 828
    • 4d Penkett CS. Woolford JA. Day IJ. Coles MP. J. Am. Chem. Soc. 2010; 132: 4
    • 5a Crimmins MT. Wang Z. McKerlie LA. J. Am. Chem. Soc. 1998; 120: 1747
    • 5b Parker KA. Fokas D. J. Am. Chem. Soc. 1992; 114: 9688
    • 5c Curran DP. Chen M.-H. Tetrahedron Lett. 1985; 26: 4991
    • 5d Parsons PJ. Ozlu Y. Cladingboel DE. Synlett 1993; 357
    • 5e Nicolaou KC. Roecker AJ. Monenschein H. Guntupalli P. Follmann M. Angew. Chem. Int. Ed. 2003; 42: 3637
    • 6a Pfeiffer MW. B. Phillips AJ. J. Am. Chem. Soc. 2005; 127: 5334
    • 6b Sugihara T. Coperet C. Owczarczyk Z. Harring LS. Negishi E. J. Am. Chem. Soc. 1994; 116: 7923
    • 6c Cordonnier M.-CA. Kan SB. J. Anderson EA. Chem. Commun. 2008; 5818
    • 6d Trost BM. Shi Y. J. Am. Chem. Soc. 1991; 113: 701
    • 6e Maddaford SP. Andersen NG. Cristofoli WA. Keay BA. J. Am. Chem. Soc. 1996; 118: 10766
    • 6f Tokan WM. Meyer FE. Schweizer S. Parsons PJ. de Meijere A. Eur. J. Org. Chem. 2008; 6152
    • 6g Schweizer S. Tokan WM. Parsons PJ. de Meijere A. Eur. J. Org. Chem. 2010; 4687
    • 7a Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 7b Mukaiyama T. Ishikawa H. Koshino H. Hayashi Y. Chem. Eur. J. 2013; 19: 17789
    • 7c Enders D. Hüttl MR. M. Grondal C. Raabe G. Nature 2006; 441: 861
    • 7d Jones SB. Simmons B. Mastracchio A. Macmillan DW. C. Nature 2011; 475: 183
    • 8a Reber KP. Tilley SD. Carson CA. Sorensen EJ. J. Org. Chem. 2013; 78: 9584
    • 8b Scott LT. Boorum MM. McMahon BJ. Hagen S. Mack J. Blank J. Wegner H. de Meijere A. Science 2002; 295: 1500
    • 8c Harrowven DC. Pascoe DD. Demurtas D. Bourne HO. Angew. Chem. Int. Ed. 2005; 44: 1221
  • 9 Parsons PJ. Board J. Faggiani D. Hitchcock PB. Preece L. Waters AJ. Tetrahedron 2010; 66: 6526
  • 10 Parsons P. Board J. Waters A. Hitchcock P. Wakenhut F. Walter D. Synlett 2006; 3243
  • 11 Corey EJ. Danheiser RL. Chandrasekaran S. Keck GE. Gopalan B. Larsen SD. Siret P. Gras JL. J. Am. Chem. Soc. 1978; 100: 8034
  • 12 Parsons PJ. Jones DR. Walsh LJ. Allen LA. T. Onwubiko A. Preece L. Board J. White AJ. P. Org. Lett. 2017; 19: 2533
  • 13 Krasovskiy A. Krasovskaya V. Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
  • 14 Parsons PJ. Waters AJ. Walter DS. Board J. J. Org. Chem. 2007; 72: 1395
  • 15 Nicolaou KC. Prasad CV. C. Somers PK. Hwang CK. J. Am. Chem. Soc. 1989; 111: 5330
    • 17a Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1969; 8: 556
    • 17b Snider BB. Ron E. J. Am. Chem. Soc. 1985; 107: 8160
  • 18 Domingo LR. Aurell MJ. Pérez P. Org. Biomol. Chem. 2014; 12: 7581
    • 19a Schmittel M. Strittmatter M. Kiau S. Tetrahedron Lett. 1995; 36: 4975
    • 19b Schmittel M. Strittmatter M. Kiau S. Angew. Chem., Int. Ed. Engl. 1996; 35: 1843
  • 20 Musch PW. Engels B. J. Am. Chem. Soc. 2001; 123: 5557
  • 21 Bekele T. Christian CF. Lipton MA. Singleton DA. J. Am. Chem. Soc. 2005; 127: 9216
  • 22 Ess DH. Wheeler SE. Iafe RG. Xu L. Çelebi-Ölçüm N. Houk KN. Angew. Chem. Int. Ed. 2008; 47: 7592
  • 23 Schmittel M. Vavilala C. J. Org. Chem. 2005; 70: 4865
  • 24 Schmittel M. Vavilala C. Jaquet R. Angew. Chem. Int. Ed. 2007; 46: 6911
    • 25a Peña D. Pérez D. Guitián E. Castedo L. Eur. J. Org. Chem. 2003; 1238
    • 25b González I. Pla-Quintana A. Roglans A. Dachs A. Solà M. Parella T. Farjas J. Roura P. Lloveras V. Vidal-Gancedo J. Chem. Commun. 2010; 46: 2944
    • 26a Robinson JM. Sakai T. Okano K. Kitawaki T. Danheiser RL. J. Am. Chem. Soc. 2010; 132: 11039
    • 26b Sakai T. Danheiser RL. J. Am. Chem. Soc. 2010; 132: 13203
  • 27 Parsons PJ. Demircan A. Synlett 1998; 1215
  • 28 Annis MC. PhD Dissertation: Free Radical Cascade Reactions Involving Furan Rings . University of Sussex; UK: 2002
  • 29 El Kaïm L. Grimaud L. Wagschal S. Oble J. Tymoschenko M. Sugawara T. Chem. Commun. 2011; 47: 1887
    • 30a Trushkov IV. Uchuskin MG. Butin AV. Eur. J. Org. Chem. 2015; 2999
    • 30b Yin B. Cai C. Zeng G. Zhang R. Li X. Jiang H. Org. Lett. 2012; 14: 1098
  • 31 Parsons PJ. Jones DR. Padgham AC. Allen LA. T. Penkett CS. Green RA. White AJ. P. Chem. Eur. J. 2016; 22: 3981
  • 32 CCDC-1425380 (87) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 33 Banjoko OO. PhD Dissertation: A Novel Cyclisation in the Construction of Fused Rings . University of Sussex; UK: 2011
  • 34 Mukherjee P. Widenhoefer RA. Angew. Chem. Int. Ed. 2012; 51: 1405
    • 35a Baykoucheva S. Chem. Inf. Bull. 2007; 59: 10
    • 35b Wang L. Chem. Eng. News 2014; 92 (17) 34