Synthesis 2017; 49(24): 5263-5284
DOI: 10.1055/s-0036-1590935
review
© Georg Thieme Verlag Stuttgart · New York

Recent Progress on Radical Decarboxylative Alkylation for Csp3–C Bond Formation

Yajun Li
Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China   Email: hlbao@fjirsm.ac.cn
,
Liang Ge
Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China   Email: hlbao@fjirsm.ac.cn
,
Munira Taj Muhammad
Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China   Email: hlbao@fjirsm.ac.cn
,
Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China   Email: hlbao@fjirsm.ac.cn
› Author Affiliations
We thank NSFC (grant no. 21402200, 21502191, 21672213), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), The 100 Talents Program, ‘The 1000 Youth Talents Program’ for financial support.
Further Information

Publication History

Received: 27 July 2017

Accepted after revision: 25 August 2017

Publication Date:
08 November 2017 (online)


Abstract

Radical decarboxylation has emerged as an attractive method for the formation of C–C bonds starting from easily accessible carboxylic acids. In this review, we attempt to bring the readers up to date in this rapidly expanding field. Specifically, we will cover recent advances in Csp3–C bond formation via the radical decarboxylation of aliphatic carboxylic acids and their activated forms, such as N-hydroxyphthalimide esters (NHP esters), alkyl diacyl peroxides, alkyl peresters, and aryliodine(III) dicarboxylates. The scope and limitation of these transformations will be discussed, highlighting gaps in knowledge and research and examining the mechanisms underlying radical decarboxylation. We aim to make this review a stepping stone for further development in this field.

1 Introduction

2 Aliphatic Carboxylic Acids

3 N-Hydroxyphthalimide Esters (NHP Esters)

4 Alkyl Diacyl Peroxides

5 Alkyl Peresters

6 Aryliodine(III) Dicarboxylates

7 Conclusion

 
  • References

  • 1 Vollhardt KP. C. Schore NE. Organische Chemie . 3rd ed. Wiley-VCH; Weinheim: 2000: 893-952
    • 2a Kolbe H. Justus Liebigs Ann. Chem. 1848; 64: 338
    • 2b Kolbe H. Justus Liebigs Ann. Chem. 1849; 69: 257
    • 3a Eschweiler W. Ber. Dtsch. Chem. Ges. 1905; 38: 880
    • 3b Clarke HT. Gillespie HB. Weisshaus SZ. J. Am. Chem. Soc. 1933; 55: 4571
    • 4a Schmidt KF. Angew. Chem. 1923; 36: 511
    • 4b Schmidt KF. Ber. Dtsch. Chem. Ges. B 1924; 57: 704
    • 5a Dakin HD. West R. J. Biol. Chem. 1928; 91: 745
    • 5b Dakin HD. West R. J. Biol. Chem. 1928; 91: 757
  • 6 Arndt F. Eistert B. Ber. Dtsch. Chem. Ges. 1935; 68: 200
    • 7a Hunsdiecker H. Hunsdiecker C. Ber. Dtsch. Chem. Ges. 1942; 75: 291
    • 7b Borodin A. Justus Liebigs Ann. Chem. 1861; 119: 121
    • 8a Ugi I. Meyr R. Fetzer U. Steinbrückner C. Angew. Chem. 1959; 71: 386
    • 8b Ugi I. Steinbrückner C. Angew. Chem. 1960; 72: 267
    • 9a Barton DH. R. Serebryakov EP. Proc. Chem. Soc. 1962; 309
    • 9b Barton DH. R. Faro HP. Serebryakov EP. Woolsey NF. J. Chem. Soc. 1965; 2438
  • 10 Minisci F. Bernardi R. Bertini F. Galli R. Perchinummo M. Tetrahedron 1971; 27: 3575
  • 11 Corey EJ. Nicolaou KC. J. Am. Chem. Soc. 1974; 96: 5614
    • 12a Friedel C. Justus Liebigs Ann. Chem. 1858; 108: 122
    • 12b Renz M. Eur. J. Org. Chem. 2005; 979

      For reviews, please see:
    • 13a Gooßen LJ. Rodríguez N. Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 13b Rodríguez N. Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 13c Dai J. Wang G. Xu X. Xu H. Chin. J. Org. Chem. 2013; 33: 2460
    • 13d Wang Z. Adv. Synth. Catal. 2013; 355: 14
    • 13e Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 13f Fu Z. Li Z. Xiong Q. Cai H. Chin. J. Org. Chem. 2015; 35: 984
    • 13g Borah AJ. Yan G. Org. Biomol. Chem. 2015; 13: 8094
    • 13h Guo L.-N. Wang H. Duan X.-H. Org. Biomol. Chem. 2016; 14: 7380

      For reviews, please see:
    • 14a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 14b Xuan J. Zhang Z.-G. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 14c Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 14d Guan B. Xu X. Wang H. Li X. Chin. J. Org. Chem. 2016; 36: 1564
    • 14e Toth BL. Tischler O. Novak Z. Tetrahedron Lett. 2016; 57: 4505
    • 14f Konev MO. Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 11340
    • 14g Liu P. Zhang G. Sun P. Org. Biomol. Chem. 2016; 14: 10763
    • 14h Patra T. Maiti D. Chem. Eur. J. 2017; 23: 7382
  • 15 Hansen KB. Springfield SA. Desmond R. Devine PN. Grabowski EJ. J. Reider PJ. Tetrahedron Lett. 2001; 42: 7353
  • 16 Liu X. Wang Z. Cheng X. Li C. J. Am. Chem. Soc. 2012; 134: 14330
  • 17 Cui L. Chen H. Liu C. Li C. Org. Lett. 2016; 18: 2188
  • 18 Zhao W.-M. Chen X.-L. Yuan J.-W. Qu L.-B. Duan L.-K. Zhao Y.-F. Chem. Commun. 2014; 50: 2018
  • 19 Lu S. Gong Y. Zhou D. J. Org. Chem. 2015; 80: 9336
    • 20a Chu L. Ohta C. Zuo Z. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 20b For similar work, see: Chinzei T. Miyazawa K. Yasu Y. Koike T. Akita M. RSC Adv. 2015; 5: 21297
  • 21 Miyake Y. Nakajima K. Nishibayashi Y. Chem. Commun. 2013; 49: 7854
    • 22a Zhou Q.-Q. Guo W. Ding W. Wu X. Chen X. Lu L.-Q. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
    • 22b For similar work, see: Vaillant FL. Courant T. Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
  • 23 Jana R. Pathak TP. Sigman MS. Chem. Rev. 2011; 111: 1417
  • 24 Tasker SZ. Standley EA. Jamison TF. Nature (London) 2014; 509: 299
  • 25 Johnston CP. Smith RT. Allmendinger S. MacMillan DW. C. Nature (London) 2016; 536: 322
  • 26 Lang SB. O’Nele KM. Tunge JA. J. Am. Chem. Soc. 2014; 136: 13606
  • 27 Capaldo L. Buzzetti L. Merli D. Fagnoni M. Ravelli D. J. Org. Chem. 2016; 81: 7102
    • 28a Nawrat CC. Jamison CR. Slutskyy Y. MacMillan DW. C. Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
    • 28b Lackner GL. Quasdorf KW. Pratsch G. Overman LE. J. Org. Chem. 2015; 80: 6012
  • 29 Zhang X. MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
  • 30 Tang J. Wang B. Wu T. Wan J. Tu Z. Njire M. Wan B. Franzblauc SG. Zhang T. Lu X. Ding K. ACS Med. Chem. Lett. 2015; 6: 814
    • 31a Okada K. Okamoto K. Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 31b Okada K. Okamoto K. Oda M. J. Chem. Soc., Chem. Commun. 1989; 1636
    • 32a Schnermann MJ. Overman LE. Angew. Chem. Int. Ed. 2012; 51: 9576
    • 32b Pratsch G. Lackner GL. Overman LE. J. Org. Chem. 2015; 80: 6025
  • 33 Kachkovskyi G. Faderl C. Reiser O. Adv. Synth. Catal. 2013; 355: 2240
    • 34a Cornella J. Edwards JT. Qin T. Kawamura S. Wang J. Pan C.-M. Gianatassio R. Schmidt M. Eastgate MD. Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 34b A similar recent paper about vinylzinc reagent: Edwards JT. Merchant RR. McClymont KS. Knouse KW. Qin T. Malins LR. Vokits B. Shaw SA. Bao D.-H. Wei F.-L. Zhou T. Eastgate MD. Baran PS. Nature (London) 2017; 545: 213
  • 35 Toriyama F. Cornella J. Wimmer L. Chen T.-G. Dixon DD. Creech G. Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
    • 36a Martin R. Fürstner A. Angew. Chem. Int. Ed. 2004; 43: 3955
    • 36b Hatakeyama T. Hashimoto T. Kondo Y. Fujiwara Y. Seike H. Takaya H. Tamada Y. Ono T. Nakamura M. J. Am. Chem. Soc. 2010; 132: 10674
    • 36c Przyojski JA. Veggeberg KP. Arman HD. Tonzetich ZJ. ACS Catal. 2015; 5: 5938
  • 37 Qin T. Malins LR. Edwards JT. Merchant RR. Novak AJ. E. Zhong JZ. Mills RB. Yan M. Yuan CX. Eastgate MD. Baran PS. Angew. Chem. Int. Ed. 2016; 55: 266
  • 38 Jin Y. Yang H. Fu H. Org. Lett. 2016; 18: 6400
  • 39 Schwarz J. König B. Green Chem. 2016; 18: 4743
  • 40 Sandfort F. O’Neill MJ. Cornella J. Wimmer L. Baran PS. Angew. Chem. Int. Ed. 2017; 56: 3319
  • 41 Qin T. Cornella J. Li C. Malins LR. Edwards JT. Kawamura S. Maxwell BD. Eastgate MD. Baran PS. Science (Washington, D. C.) 2016; 352: 801
  • 42 Wang J. Qin T. Chen T.-G. Wimmer L. Edwards JT. Cornella J. Vokits B. Shaw SA. Baran PS. Angew. Chem. Int. Ed. 2016; 55: 9676
  • 43 Huihui KM. M. Caputo JA. Melchor Z. Olivares AM. Spiewak AM. Johnson KA. DiBenedetto TA. Kim S. Ackerman LK. G. Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
  • 44 Yang J. Zhang J. Qi L. Hu C. Chen Y. Chem. Commun. 2015; 51: 5275
  • 45 Hu C. Chen Y. Org. Chem. Front. 2015; 2: 1352
  • 46 Li J. Tian H. Jiang M. Yang H. Zhao Y. Fu H. Chem. Commun. 2016; 52: 8862
  • 47 Lu X. Xiao B. Liu L. Fu Y. Chem. Eur. J. 2016; 22: 11161
  • 48 Tlahuext-Aca A. Garza-Sanchez RA. Glorius F. Angew. Chem. Int. Ed. 2017; 56: 3708
  • 49 Suzuki N. Hofstra JL. Poremba KE. Reisman SE. Org. Lett. 2017; 19: 2150
  • 50 Lackner GL. Quasdorf KW. Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
  • 51 Gao C. Li J. Yu J. Yang H. Fu H. Chem. Commun. 2016; 52: 7292
    • 52a Spantulescu MD. Jain RP. Derksen DJ. Vederas JC. Org. Lett. 2003; 5: 2963
    • 52b Jain RP. Vederas JC. Org. Lett. 2003; 5: 4669
  • 53 Li Y. Han Y. Xiong H. Zhu N. Qian B. Ye C. Kantchev EA. B. Bao H. Org. Lett. 2016; 18: 392
  • 54 Li Y. Ge L. Qian B. Babu KR. Bao H. Tetrahedron Lett. 2016; 57: 5677
  • 55 Babu KR. Zhu N. Bao H. Org. Lett. 2017; 19: 46
  • 56 Jian W. Ge L. Jiao Y. Qian B. Bao H. Angew. Chem. Int. Ed. 2017; 56: 3650
    • 57a Jui NT. Lee EC. MacMillan DW. J. Am. Chem. Soc. 2010; 132: 10015
    • 57b Jui NT. Garber JA. Finelli FG. MacMillan DW. J. Am. Chem. Soc. 2012; 134: 11400
    • 57c Du P. Li H. Wang Y. Cheng J. Wan X. Org. Lett. 2014; 16: 6350
    • 57d Xu P. Wang G. Zhu Y. Li W. Cheng Y. Li S. Zhu C. Angew. Chem. Int. Ed. 2016; 55: 2939
  • 58 Ge L. Li Y. Jian W. Bao H. Chem. Eur. J. 2017; 23: 11767
  • 59 Zhu X. Ye C. Li Y. Bao H. Chem. Eur. J. 2017; 23: 10254
  • 60 Pan C. Zhang H. Han J. Cheng Y. Zhu C. Chem. Commun. 2015; 51: 3786
  • 61 Zhu H. Teng F. Pan C. Cheng J. Yu J.-T. Tetrahedron Lett. 2016; 57: 2372
  • 62 Pan C. Fu Y. Ni Q. Yu J.-T. J. Org. Chem. 2017; 82: 5005
  • 63 DiRocco DA. Dykstra K. Krska S. Vachal P. Conway DV. Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
    • 64a Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
    • 64b Beletskaya IP. Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 64c Dounay AB. Overman LE. Chem. Rev. 2003; 103: 2945
    • 64d Littke AF. Fu GC. J. Am. Chem. Soc. 2001; 123: 6989
    • 64e Le Bras J. Muzart J. Chem. Rev. 2011; 111: 1170
  • 65 Akiyama F. Miyazaki H. Kaneda K. Teranishi S. Fujiwara Y. Abe M. Taniguchi H. J. Org. Chem. 1980; 45: 2359
  • 66 Crestoni ME. Fornarini S. J. Am. Chem. Soc. 1989; 111: 6008
  • 67 Rauf W. Brown JM. Angew. Chem. Int. Ed. 2008; 47: 4228
  • 68 Zhu N. Zhao J. Bao H. Chem. Sci. 2017; 8: 2081
    • 69a Varvoglis A. Chem. Soc. Rev. 1981; 10: 377
    • 69b Togo H. Katohgi M. Synlett 2001; 565
    • 69c Wang L. Liu J. Eur. J. Org. Chem. 2016; 1813
    • 69d Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 70 Cox RJ. Nat. Prod. Rep. 1996; 13: 29
  • 71 Sutherland A. Vederas JC. Chem. Commun. 2002; 224
  • 72 Wu T. Zhang H. Liu G. Tetrahedron 2012; 68: 5229
  • 73 Xie J. Xu P. Li H. Xue Q. Jin H. Cheng Y. Zhu C. Chem. Commun. 2013; 49: 5672
    • 74a Wang Y. Zhang L. Yang Y. Zhang P. Du Z. Wang C. J. Am. Chem. Soc. 2013; 135: 18048
    • 74b For a similar work catalyzed by iron: Wang Z. Kanai M. Kuninobu Y. Org. Lett. 2017; 19: 2398
  • 75 He Z. Bae M. Wu J. Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 14451