Synthesis 2018; 50(02): 341-348
DOI: 10.1055/s-0036-1590934
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Assembly towards ω-Substituted Arylbiurets from ­Aromatic Amines, Potassium Cyanate, and Glacial Acetic Acid

Xiangting Min
a  School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, Liaoning Province, 124221, P. R. of China
,
Jianhui Liu*
a  School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, Liaoning Province, 124221, P. R. of China
b  State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. of China   Email: liujh@dlut.edu.cn
,
Yawen Dong
b  State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. of China   Email: liujh@dlut.edu.cn
,
Mustafa Hussain
b  State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. of China   Email: liujh@dlut.edu.cn
› Author Affiliations
This work was supported financially by the State Key Laboratory of Fine Chemicals (Panjin) (Grant No. JH2014009) project and the Fundamental­ Research Funds for the Central Universities.
Further Information

Publication History

Received: 10 July 2017

Accepted after revision: 13 September 2017

Publication Date:
23 October 2017 (online)


Abstract

A novel, simple, and highly efficient method has been designed for the synthesis of ω-substituted arylbiurets in a one-pot reaction. The primary features of this protocol include readily available starting materials, an easy work-up procedure, and yields of 51 to 87%. ω-Substituted arylbiurets can be selectively prepared with an excess of potassium cyanate (KOCN). However, use of an excess of glacial acetic acid (AcOH) switches the reaction towards the formation of N-monosubstituted urea.

Supporting Information

 
  • References

  • 1 Fang F.-C. Chu C.-C. Huang C.-H. Raffy G. Del Guerzo A. Wong K.-T. Bassani DM. Chem. Commun. 2008; 6369
  • 2 Tseng KP. Tsai YT. Wu CC. Shyue JJ. Bassani DM. Wong KT. Chem. Commun. 2013; 11536
  • 3 Yamada K. Okazaki Y. Inomata T. Kuroiwa K. Kimizuka N. Ozawa T. Funahashi Y. Masuda H. J. Nanosci. Nanotechnol. 2009; 9: 307
  • 4 Close W. J. Am. Chem. Soc. 1953; 75: 3617
  • 5 Davis TL. Blanchard KC. J. Am. Chem. Soc. 1929; 51: 1801
  • 6 Plater MJ. Sinclair JP. Aiken S. Gelbrich T. Hursthouse MB. Tetrahedron 2004; 60: 6385
    • 7a Zerkowski JA. Seto CT. Whitesides GM. J. Am. Chem. Soc. 1992; 114: 5473
    • 7b Zerkowski JA. Seto CT. Whitesides GM. J. Am. Chem. Soc. 1990; 112: 9025
  • 8 Seto CT. Whitesides GM. J. Am. Chem. Soc. 1993; 115: 905
  • 9 Gatri R. Ouerfelli I. Efrit ML. Serein-Spirau F. Lère-Porte J.-P. Valvin P. Roisnel T. Bivaud S. Akdas-Kilig H. Fillaut J.-L. Organometallics 2014; 33: 665
  • 10 De Luca L. Porcheddu A. Giacomelli G. Murgia I. Synlett 2010; 2439
  • 11 Davis TL. Blanchard KC. J. Am. Chem. Soc. 1929; 51: 1806
  • 12 Sardarian AR. Inaloo ID. RSC Adv. 2015; 5: 76626
    • 13a Williams A. Jencks WP. J. Chem. Soc., Perkin Trans. 2 1974; 1753
    • 13b Williams A. Jencks WP. J. Chem. Soc., Perkin Trans. 2 1974; 1760
  • 14 Petrak S. Shadurka V. Binder WH. Prog. Org. Coat. 2009; 66: 296
  • 15 Curd F. Davey D. Richardson D. J. Am. Chem. Soc. 1949; 71: 1732
  • 16 Weigert FJ. Sheppard WA. J. Org. Chem. 1976; 41: 4006
  • 17 Wertheim E. J. Am. Chem. Soc. 1931; 53: 200
  • 18 Breitler S. Oldenhuis NJ. Fors BP. Buchwald SL. Org. Lett. 2011; 13: 3262
  • 19 Modi RV. Sen DD. J. Int. J. Drug Dev. Res. 2010; 2: 51