Synlett 2018; 29(03): 301-305
DOI: 10.1055/s-0036-1590932
letter
© Georg Thieme Verlag Stuttgart · New York

Thieme Chemistry Journals Awardees – Where Are They Now?
Bis(2-pyridyl)amides as Readily Cleavable Amides Under Catalytic, Neutral, and Room-Temperature Conditions

Shinya Adachi
Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan   Email: nkumagai@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
,
Naoya Kumagai*
Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan   Email: nkumagai@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
,
Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan   Email: nkumagai@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
› Author Affiliations
This work was financially supported by KAKENHI (17H03025 and JP16H01043 in Precisely Designed Catalysts with Customized Scaffolding) from JSPS.
Further Information

Publication History

Received: 21 August 2017

Accepted after revision: 13 September 2017

Publication Date:
11 October 2017 (online)


Abstract

Mild solvolytic cleavage of bis(2-pyridyl)amide under neutral and room-temperature conditions is described. The inherently stable amide was readily activated by catalytic amounts of metal cations to react with alcohols. Based on X-ray crystallographic analysis, the primary driving force was considered to be amide distortion induced by the metal coordination of two pyridyl groups in a bidentate fashion without affecting the amide functionality. The compatibility of the acid/base-sensitive functionalities and the absence of racemization during solvolysis highlight the mildness of the present protocol.

Supporting Information

 
  • References and Notes

  • 1 Greenberg A. Breneman CM. Liebman JF. The Amide Linkage: Structural Aspects in Chemistry, Biochemistry, and Materials Science . Wiley-Interscience; New York: 2000
  • 3 Lukeš R. Collect. Czech. Chem. Commun. 1938; 10: 148
  • 4 Winkler FK. Dunitz JD. J. Mol. Biol. 1971; 59: 169
    • 5a Kirby AJ. Komarov IV. Feede N. J. Am. Chem. Soc. 1998; 120: 7101
    • 5b Kirby AJ. Komarov IV. Wothers PD. Feeder N. Angew. Chem. Int. Ed. 1998; 37: 785
    • 5c Kirby AJ. Komarov IV. Feeder N. J. Chem. Soc., Perkin Trans. 2 2001; 522
    • 5d Tani K. Stoltz BM. Nature 2006; 441: 731
    • 5e Komarov IV. Yanik S. Ishchenko AY. Davies JE. Goodman JM. Kirby AJ. J. Am. Chem. Soc. 2015; 137: 926
    • 5f Liniger M. VanderVelde DG. Takase MK. Shahgholi M. Stoltz BM. J. Am. Chem. Soc. 2016; 138: 969
    • 6a Pedone C. Benedetti E. Immirzi A. Allegra G. J. Am. Chem. Soc. 1970; 92: 3549
    • 6b Somayaji V. Brown RS. J. Org. Chem. 1986; 51: 2676
    • 6c Shustov GV. Kadorkina GK. Varlamov SV. Kachanov AV. Kostyanovsky RG. Rauk A. J. Am. Chem. Soc. 1992; 114: 1616
    • 6d Yamada S. Angew. Chem. Int. Ed. 1993; 32: 1083
    • 6e Shao H. Jiang X. Gantzel P. Goodman M. Chem. Biol. 1994; 1: 231
    • 6f Yamamoto G. Murakami H. Tsubai N. Mazaki Y. Chem. Lett. 1997; 605
    • 6g Matta CF. Cow CC. Sun S. Britten JF. Harrison PH. M. J. Mol. Struct. 2000; 523: 241
    • 6h Łysek R. Borsuk K. Chmielewski M. Urbańczyk-Lipkowska ZK. Z. Klimek A. Frelek J. J. Org. Chem. 2002; 67: 1472
    • 6i Gillson A.-ME. Glover SA. Tucker DJ. Turner P. Org. Biomol. Chem. 2003; 1: 3430
    • 6j Otani Y. Nagae O. Naruse Y. Inagaki S. Ohno M. Yamaguchi K. Yamamoto G. Uchiyama M. Ohwada T. J. Am. Chem. Soc. 2003; 125: 15191
    • 6k Szostak M. Yao L. Aubé J. J. Am. Chem. Soc. 2010; 132: 2078
    • 6l Artacho J. Ascic E. Rantanen T. Wallentin C.-J. Dawaigher S. Bergquist K.-E. Harmata M. Snieckus V. Wärnmark K. Org. Lett. 2012; 14: 4706
    • 6m Zaretsky S. Rai V. Gish G. Forbes MW. Kofler M. Yu JC. Y. Tan J. Hickey JL. Pawson T. Yudin AK. Org. Biomol. Chem. 2015; 13: 7384
    • 7a Meng G. Szostak M. Org. Lett. 2015; 17: 4364
    • 7b Pace V. Holzer W. Meng G. Shi S. Lalancette R. Szostak R. Szostak M. Chem. Eur. J. 2016; 22: 14494
    • 7c Szostak R. Shi S. Meng G. Lalancette R. Szostak M. J. Org. Chem. 2016; 81: 8091

      For examples of acid anhydride formation and Friedel–Crafts reactions using N-acylimides, see:
    • 9a Liu Y. Meng G. Liu R. Szostak M. Chem. Commun. 2016; 52: 6841
    • 9b Liu Y. Liu R. Szostak M. Org. Biomol. Chem. 2017; 15: 1780
    • 10a Li X. Zou G. Chem. Commun. 2015; 51: 5089
    • 10b Baker EL. Yamano MM. Zhou Y. Anthony SM. Garg NK. Nat. Commun. 2016; 7: 11554
    • 10c Cui M. Wu H. Jian J. Wang H. Liu C. Daniel S. Zeng Z. Chem. Commun. 2016; 52: 12076
    • 10d Hie L. Baker EL. Anthony SM. Desrosiers JN. Senanayake C. Garg NK. Angew. Chem. Int. Ed. 2016; 55: 15129
    • 10e Hu J. Zhao Y. Liu J. Zhang Y. Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 10f Liu LL. Chen P. Sun Y. Wu Y. Chen S. Zhu J. Zhao Y. J. Org. Chem. 2016; 81: 11686
    • 10g Meng G. Shi S. Szostak M. ACS Catal. 2016; 6: 7335
    • 10h Shi S. Szostak M. Org. Lett. 2016; 18: 5872
    • 10i Simmons BJ. Weires NA. Dander JE. Garg NK. ACS Catal. 2016; 6: 3176
    • 10j Weires NA. Baker EL. Garg NK. Nat. Chem. 2016; 8: 75
    • 10k Dander JE. Baker EL. Garg NK. Chem. Sci. 2017; 8: 6433
    • 10l Lei P. Meng G. Shi S. Ling Y. An J. Szostak R. Szostak M. Chem. Sci. 2017; 8: 6525
    • 10m Liu C. Liu Y. Liu R. Lalancette R. Szostak R. Szostak M. Org. Lett. 2017; 19: 1434
    • 10n Medina JM. Moreno J. Racine S. Du S. Garg NK. Angew. Chem. Int. Ed. 2017; 56: 6567
    • 11a Liu C. Meng G. Liu Y. Liu R. Lalancette R. Szostak R. Szostak M. Org. Lett. 2016; 18: 4194
    • 11b Liu C. Meng G. Szostak M. J. Org. Chem. 2016; 81: 12023
    • 11c Wu H. Liu T. Cui M. Li Y. Jian J. Wang H. Zeng Z. Org. Biomol. Chem. 2017; 15: 536
  • 12 Dey A. Sasmal S. Seth K. Lahiri GK. Maiti D. ACS Catal. 2016; 7: 433
  • 13 Liu C. Achtenhagen M. Szostak M. Org. Lett. 2016; 18: 2375
    • 14a Hie L. Fine Nathel NF. Shah TK. Baker EL. Hong X. Yang YF. Liu P. Houk KN. Garg NK. Nature 2015; 524: 79
    • 14b Dander JE. Weires NA. Garg NK. Org. Lett. 2016; 18: 3934
    • 14c Szostak R. Meng G. Szostak M. J. Org. Chem. 2017; 82: 6373
    • 15a Houghton RP. Puttner RR. J. Chem. Soc., Chem. Commun. 1970; 1270
    • 15b Cox C. Ferraris D. Murthy NN. Lectka T. J. Am. Chem. Soc. 1996; 118: 5332
    • 15c Niklas N. Hampel F. Liehr G. Zahl A. Alsfasser R. Chem. Eur. J. 2001; 7: 5135
    • 15d Niklas N. Heinemann FW. Hampel F. Alsfasser R. Angew. Chem. Int. Ed. 2002; 41: 3386
    • 15e Niklas N. Heinemann FW. Hampel F. Clark T. Alsfasser R. Inorg. Chem. 2004; 43: 4663
    • 15f Niklas N. Alsfasser R. Dalton Trans. 2006; 3188
    • 15g Brohmer MC. Mundinger S. Bräse S. Bannwarth W. Angew. Chem. Int. Ed. 2011; 50: 6175
    • 15h Mundinger S. Jakob U. Bichovski P. Bannwarth W. J. Org. Chem. 2012; 77: 8968
    • 15i Jakob U. Mundinger S. Bannwarth W. Eur. J. Org. Chem. 2014; 2014: 6963
    • 15j Mundinger S. Jakob U. Bannwarth W. Chem. Eur. J. 2014; 20: 1258
  • 16 Adachi S. Kumagai N. Shibasaki M. Chem. Sci. 2017; 8: 85
  • 17 Although cation-driven solvolysis was much faster, partial solvolysis of amide 6a proceeded under basic conditions: 1 equiv NaOH: 15%, 1 equiv DBU: 25% (identical conditions to Table 1: in CD3OD, rt, 12 h). Compound 6a was sufficiently stable under mild conditions and remained unchanged in the presence 1 equiv of Et3N.
  • 18 See Supporting Information.
  • 19 Other designed amide cleavable by stoichiometric amount of Zn(OTf)2 was developed. See ref. 15j.
  • 20 A part of the crsytal structure was disordered. See Supporting Information.

    • For transesterification and transamidation of innate reactive amides, see:
    • 21a Hutchby M. Houlden CE. Haddow MF. Tyler SN. Lloyd-Jones GC. Booker-Milburn KI. Angew. Chem. Int. Ed. 2012; 51: 548
    • 21b Aubé J. Angew. Chem. Int. Ed. 2012; 51: 3063
    • 21c Liu Y. Shi S. Achtenhagen M. Liu R. Szostak M. Org. Lett. 2017; 19: 1614 ; see also ref. 10b,d,k and 14a,b
  • 22 General Procedure: Catalytic Solvolysis of Amide 6 A flame-dried 5 mL round-bottomed flask equipped with a magnetic stirring bar and a septum cap was charged with amide 6 (0.20 mmol) and Zn(OTf)2 (0.01 mmol, 5 mol% or 0.004 mmol, 2 mol%; 0.02 mmol, 10 mol% or 0.01 mmol, 5 mol% of Cu(OTf)2 were used for the synthesis of 7ac or 7c, respectively) in a glove box under Ar atmosphere. After adding anhydrous MeOH (2.0 mL; 2 mL of EtOH or i PrOH was used for the synthesis of 7ab or 7ac) at rt, the resulting clear solution was stirred for designated period of reaction time at the same temperature. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by flash column chromatography to give esters 7. Methyl cinnamate (7a): white solid; yield 29.7 mg (92%). Ethyl cinnamate (7ab): colorless oil; yield 33.5 mg (95%). Isopropyl Cinnamate (7ac): colorless oil; yield 26.9 mg (71%). Methyl 4-[(tert-butoxycarbonyl)amino]benzoate (7b): white solid; yield 41.4 mg (82%). Methyl 4-(methoxymethoxy)benzoate (7c): clorless oil; yield 35.9 mg (91%). Methyl 4-[(tert-butyldimethylsilyl)oxy]benzoate (7d): colorless oil; yield 51.2 mg (96%). tert-Butyl methyl terephthalate (7e): white solid; yield 42.8 mg (91%). Methyl picolinate (7f): colorless oil; yield 26.7 mg (97%). Methyl 4-oxo-4-phenylbutanoate (7g): colorless oil; yield 36.4 mg (95%). (S)-Methyl 2-({[(9H-fluoren-9-yl)methoxy]carbonyl}amino) propanoate (7h): white solid; yield 57.6 mg (89%).
  • 23 Determined by HPLC analysis.