Synthesis 2018; 50(02): 282-294
DOI: 10.1055/s-0036-1590927
paper
© Georg Thieme Verlag Stuttgart · New York

α-Selective Glycosylation of 3,6-O-o-Xylylene-Bridged Glucosyl Fluoride

Atsushi Motoyama
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan   Email: hidetosh@kwansei.ac.jp
,
Tomoki Arai
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan   Email: hidetosh@kwansei.ac.jp
,
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan   Email: hidetosh@kwansei.ac.jp
,
Kazuya Aki
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan   Email: hidetosh@kwansei.ac.jp
,
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan   Email: hidetosh@kwansei.ac.jp
,
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan   Email: hidetosh@kwansei.ac.jp
› Author Affiliations
MEXT supported the program for the Strategic Research Foundation at Private Universities (S1311046) and JSPS KAKENHI (Grant Numbers JP15K13650, JP16H01163 in Middle Molecular Strategy, and JP16KT0061) partly supported this work.
Further Information

Publication History

Received: 10 August 2017

Accepted after revision: 12 September 2017

Publication Date:
09 October 2017 (online)

Abstract

A 1,2-cis-(α)-selective glycosylation has been developed. An ortho-xylylene group bridged between 3-O and 6-O of d-glucosyl fluoride, which straddles the β-face of the pyranose ring, hinders the ­approach of glycosyl acceptors from that face. The determination of the three-dimensional structure of the bridged glucosyl fluoride, the optimization process of the reaction conditions oriented toward kinetic control to realize the high α-selectivity, and the scope of the reaction are described.

Supporting Information

 
  • References

  • 2 Gridley JJ. Osborn HM. I. J. Chem. Soc., Perkin Trans. 1 2000; 1471
    • 3a Banoub J. Bundle DR. Can. J. Chem. 1979; 57: 2091
    • 3b Flitsh SL. Nature 2005; 437: 201
    • 3c Guo J. Ye X.-S. Molecules 2010; 15: 7235
  • 4 Demchenko AV. Curr. Org. Chem. 2003; 7: 35
    • 5a Demchenko AV. Synlett 2003; 1225
    • 5b Nigudkar SS. Demchenko AV. Chem. Sci. 2015; 6: 2687
    • 5c Komarova BS. Tsvetkov YE. Nifantiev NE. Chem. Rec. 2016; 16: 488

      For NGP based on acyl groups at O-3, see:
    • 6a Parameswar AR. Pornsuriyasak P. Lubanowski NA. Demchenko AV. Tetrahedron 2007; 63: 10083
    • 6b Alpe M. Oscarson S. Carbohydr. Res. 2002; 337: 1715
    • 6c Ennis SC. Cumpstey I. Fairbanks AJ. Butters TD. Mackeen M. Wormald MR. Tetrahedron 2002; 58: 9403

      For NGP based on acyl groups at O-4, see:
    • 7a Nunomura S. Ogawa T. Tetrahedron Lett. 1988; 29: 5681
    • 7b Budhadev D. Mukhopadhyay B. Carbohydr. Res. 2014; 394: 26

      For NGP based on acyl groups at O-6, see:
    • 8a Lourenço EC. Maycock CD. Ventura MR. Carbohydr. Res. 2009; 344: 2073
    • 8b Mandal PK. Chheda PR. Tetrahedron Lett. 2015; 56: 900
    • 9a Kim J.-H. Yang H. Park J. Boons G.-J. J. Am. Chem. Soc. 2005; 127: 12090
    • 9b Boltje TJ. Kim J.-H. Park J. Boons G.-J. Nat. Chem. 2010; 2: 552
    • 9c Boltje TJ. Kim J.-H. Park J. Boons G.-J. Org. Lett. 2011; 13: 284
    • 9d Fang T. Mo K.-F. Boons G.-J. J. Am. Chem. Soc. 2012; 134: 7545
    • 9e Fang T. Gu Y. Huang W. Boons G.-J. J. Am. Chem. Soc. 2016; 138: 3002
    • 10a Fairbanks AJ. Synlett 2003; 1945
    • 10b Ishiwata A. Lee YJ. Ito Y. Org. Biomol. Chem. 2010; 8: 3596
    • 11a Stork G. Kim G. J. Am. Chem. Soc. 1992; 114: 1087
    • 11b Bols M. Skrydstrup T. Chem. Rev. 1995; 95: 1253
    • 11c Partridge KM. Bader SJ. Buchan ZA. Taylor CE. Montgomery J. Angew. Chem. Int. Ed. 2013; 52: 13647
    • 12a Attolino E. Cumpstey I. Fairbanks AJ. Carbohydr. Res. 2006; 341: 1609
    • 12b Leigh CD. Bertozzi CR. J. Org. Chem. 2008; 73: 1008
    • 13a Nakagawa A. Tanaka M. Hanamura S. Takahashi D. Toshima K. Angew. Chem. Int. Ed. 2015; 54: 10935
    • 13b Tanaka M. Nashida J. Takahashi D. Toshima K. Org. Lett. 2016; 18: 2288
    • 13c Tanaka M. Takahashi D. Toshima K. Org. Lett. 2016; 18: 5030
  • 14 Pornsuriyasak P. Jia XG. Kaeothip S. Demchenko AV. Org. Lett. 2016; 18: 2316
    • 15a Smoot JT. Pornsuriyasak P. Demchenko AV. Angew. Chem. Int. Ed. 2005; 44: 7123
    • 15b Yasomanee JP. Demchenko AV. J. Am. Chem. Soc. 2012; 134: 20097
    • 16a Houdier S. Vottero PJ. A. Carbohydr. Res. 1992; 232: 349
    • 16b Fukase K. Nakai Y. Kanoh T. Kusumoto S. Synlett 1998; 84
    • 16c Fukase K. Nakai Y. Egusa K. Porco JA. Jr. Kusumoto S. Synlett 1999; 1074
    • 16d Tokimoto H. Fujimoto Y. Fukase K. Kusumoto S. Tetrahedron: Asymmetry 2005; 16: 441
  • 17 Okada Y. Asakura N. Bando M. Ashikaga Y. Yamada H. J. Am. Chem. Soc. 2012; 134: 6940
  • 18 Haasnoot CA. G. de Leeuw FA. A. M. Altona C. Tetrahedron 1980; 36: 2783
    • 19a Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 19b Stephens PJ. Devlin FJ. Chabalowski CF. Frisch MJ. J. Phys. Chem. 1994; 98: 11623
    • 20a Mukaiyama T. Murai Y. Shoda S. Chem. Lett. 1981; 431
    • 20b Hashimoto S. Hayashi M. Noyori R. Tetrahedron Lett. 1984; 25: 1379
    • 20c Nicolaou KC. Chucholowski A. Dolle RE. Randall JL. J. Chem. Soc., Chem. Commun. 1984; 1155
    • 20d Kunz H. Sager W. Helv. Chim. Acta 1985; 68: 283
    • 20e Ogawa T. Takahashi Y. Carbohydr. Res. 1985; 138: C5
    • 20f Matsumoto T. Maeta H. Suzuki K. Tsuchihashi G. Tetrahedron Lett. 1988; 29: 3567
    • 20g Suzuki K. Maeta H. Matsumoto T. Tsuchihashi G. Tetrahedron Lett. 1988; 29: 3571
    • 20h Mukaiyama T. Maeshima H. Jona H. Chem. Lett. 2001; 388
  • 21 Cao Y. Kasai Y. Bando M. Kawagoe M. Yamada H. Tetra­hedron 2009; 65: 2574
  • 22 Mizuno M. Kobayashi K. Nakajima H. Koya M. Inazu T. Synth. Commun. 2002; 32: 1665
  • 23 Spijker NM. van Boekel CA. A. Angew. Chem. Int. Ed. 1991; 30: 180