Synthesis 2017; 49(15): 3476-3484
DOI: 10.1055/s-0036-1590471
paper
© Georg Thieme Verlag Stuttgart · New York

Triazolylidene Ligands Allow Cobalt-Catalyzed C–H/C–O Alkenyl­ations at Ambient Temperature

Nicolas Sauermann
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   eMail: Lutz.Ackermann@chemie.uni-goettingen.de
,
Joachim Loup
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   eMail: Lutz.Ackermann@chemie.uni-goettingen.de
,
Darius Kootz
b   Department für Chemie, Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
,
V. Reddy Yatham
b   Department für Chemie, Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
,
Albrecht Berkessel
b   Department für Chemie, Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
,
Lutz Ackermann*
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   eMail: Lutz.Ackermann@chemie.uni-goettingen.de
› Institutsangaben
Generous support by the DFG (SPP 1807 ‘Control of London dispersion in molecular chemistry’) and the CaSuS PhD Programme (fellowship to N.S.) is gratefully acknowledged.
Weitere Informationen

Publikationsverlauf

Received: 21. April 2017

Accepted: 25. April 2017

Publikationsdatum:
12. Juni 2017 (online)


Dedicated to Prof. Dr. Herbert Mayr

Abstract

Direct alkenylation through C–H/C–O cleavage was accomplished under mild reaction conditions by cobalt catalysts derived from novel triazolylidene ligands. The most effective ligand is characterized by sterically demanding substituents on the 1,4-N-atoms of the triazolylidene neighboring the carbene center. The C–H alkenylations proved viable with alkenyl acetates, carbamates, carbonates and phosphates. For acyclic electrophiles, diastereoconvergent C–O functionalizations were observed.

Supporting Information

 
  • References

    • 1a Schmidt AW. Reddy KR. Knölker H.-J. Chem. Rev. 2012; 112: 3193
    • 1b Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1c Fan H. Peng J. Hamann MT. Hu J.-F. Chem. Rev. 2008; 108: 264
    • 1d Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1e Ackermann L. Synlett 2007; 507

      Selected reviews:
    • 2a Grimsdale AC. Leok Chan K. Martin RE. Jokisz PG. Holmes AB. Chem. Rev. 2009; 109: 897
    • 2b Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 3a Song G. Li X. Acc. Chem. Res. 2015; 48: 1007
    • 3b Shin K. Kim H. Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 3c Segawa Y. Maekawa T. Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 3d Kuhl N. Schröder N. Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 3e Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 3f Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 3g Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 3h Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 3i Ackermann L. Vicente R. Kapdi AR. Angew. Chem. 2009; 121: 9976
  • 4 Chirik P. Morris R. Acc. Chem. Res. 2015; 48: 2495

    • For representative reviews, see:
    • 5a Misal CL. C. Naoto C. Chem. Lett. 2015; 44: 410
    • 5b McCann SD. Stahl SS. Acc. Chem. Res. 2015; 48: 1756
    • 5c Koji H. Masahiro M. Chem. Lett. 2015; 44: 868
    • 5d Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 8a Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 8b Yoshikai N. ChemCatChem 2015; 7: 732
    • 8c Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 8d Ackermann L. J. Org. Chem. 2014; 79: 8948
    • 10a Mei R. Ackermann L. Adv. Synth. Catal. 2016; 358: 2443
    • 10b Li J. Ackermann L. Chem. Eur. J. 2015; 21: 5718
    • 10c Punji B. Song W. Shevchenko GA. Ackermann L. Chem. Eur. J. 2013; 19: 10605
    • 10d Song W. Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251

      For selected examples, see:
    • 11a Cong X. Zhai S. Zeng X. Org. Chem. Front. 2016; 3: 673
    • 11b Chen Q. Ilies L. Yoshikai N. Nakamura E. Org. Lett. 2011; 13: 3232
    • 11c Chen Q. Ilies L. Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
    • 11d Halbritter G. Knoch F. Wolski A. Kisch H. Angew. Chem., Int. Ed. Engl. 1994; 33: 1603

      For reviews, see:
    • 12a Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
    • 12b Enders D. Niemeier O. Henseler A. Chem. Rev. 2007; 107: 5606
    • 12c Enders D. Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 12d Enders D. Breuer K. Teles JH. Ebel K. J. Prakt. Chem. 1997; 339: 397

      For representative examples, see:
    • 13a Gawin R. Pieczykolan M. Malińska M. Woźniak K. Grela K. Synlett 2013; 24: 1250
    • 13b Zhao L. Ma Y. Duan W. He F. Chen J. Song C. Org. Lett. 2012; 14: 5780
    • 13c Strand RB. Helgerud T. Solvang T. Dolva A. Sperger CA. Fiksdahl A. Tetrahedron: Asymmetry 2012; 23: 1350
    • 13d Loh CC. J. Enders D. Chem. Eur. J. 2012; 18: 10212
    • 13e Bouffard J. Keitz BK. Tonner R. Guisado-Barrios G. Frenking G. Grubbs RH. Bertrand G. Organometallics 2011; 30: 2617
    • 13f Trnka TM. Morgan JP. Sanford MS. Wilhelm TE. Scholl M. Choi T.-L. Ding S. Day MW. Grubbs RH. J. Am. Chem. Soc. 2003; 125: 2546
    • 13g Enders D. Gielen H. J. Organomet. Chem. 2001; 617–618: 70
    • 13h Enders D. Gielen H. Breuer K. Tetrahedron: Asymmetry 1997; 8: 3571

      For reviews on C–O activation, see:
    • 14a Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 14b Kozhushkov SI. Potukuchi HK. Ackermann L. Cat. Sci. Tech. 2013; 3: 562
    • 14c Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 14d Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
  • 15 Moselage M. Sauermann N. Richter SC. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
  • 16 Yatham VR. Harnying W. Kootz D. Neudörfl J.-M. Schlörer NE. Berkessel A. J. Am. Chem. Soc. 2016; 138: 2670
  • 17 Under otherwise identical reaction conditions, N-methyl- and N-phenylindole did not lead to any C–H activation
  • 18 Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 19 Wagner JP. Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
  • 20 Enders D. Breuer K. Kallfass U. Balensiefer T. Synthesis 2003; 1292
  • 21 Ackermann L. Lygin AV. Org. Lett. 2011; 13: 3332
  • 22 Onishi Y. Yoneda Y. Nishimoto Y. Yasuda M. Baba A. Org. Lett. 2012; 14: 5788
  • 23 Qin X. Liu H. Qin D. Wu Q. You J. Zhao D. Guo Q. Huang X. Lan J. Chem. Sci. 2013; 4: 1964
  • 24 Ding Y. Wang W. Liu Z. Phosphorus, Sulfur Silicon Relat. Elem. 1996; 118: 113
  • 25 Silvestri MG. Hanson MP. Pavlovich JG. Studen LF. DeClue MS. DeGraffenreid MR. Amos CD. J. Org. Chem. 1999; 64: 6597
  • 26 Boultadakis-Arapinis M. Hopkinson MN. Glorius F. Org. Lett. 2014; 16: 1630
  • 27 Narlawar R. Werry EL. Scarf AM. Hanani R. Chua SW. King VA. Barron ML. Martins RN. Ittner LM. Rendina LM. Kassiou M. J. Med. Chem. 2015; 58: 8743