Synthesis 2018; 50(17): 3257-3280
DOI: 10.1055/s-0036-1589540
review
© Georg Thieme Verlag Stuttgart · New York

History of Chemical Routes towards Cyclic Non-Enzymatic Oxygenated Metabolites of Polyunsaturated Fatty Acids

Camille Oger
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
,
Claire Cuyamendous
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
,
Aurélien de la Torre
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
,
Mathieu Candy
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
,
Alexandre Guy
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
,
Valérie Bultel-Poncé
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
,
Thierry Durand
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
,
Jean-Marie Galano
Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 05, France   Email: Jean-marie.galano@umontpellier.fr
› Author Affiliations
Further Information

Publication History

Received: 03 May 2018

Accepted after revision: 04 May 2018

Publication Date:
07 August 2018 (eFirst)

Abstract

Enzymatically formed oxygenated metabolites of polyunsaturated fatty acids (PUFA) are of great interest for the scientific community being mediators and biomarkers in the physiological and pathological regulation of many key biological processes. More recently; metabolites of PUFA formed through a non-enzymatic free radical pathway have gained interest in diseases linked with oxidative stress. Thus, synthetic strategies leading to the total synthesis of such metabolites are an essential field of research, and this review will cover a structural presentation, will discuss their biological interests, and present total syntheses reported between 2008 and 2017.

1 Introduction

2 Non-Enzymatic Metabolites of PUFAs

2.1 Where Do They Come From?

2.2 Why Are They Interesting Metabolites?

2.3 A Huge Family of Natural Compounds

2.3.1 Presentation of All Families

2.3.1.1 Isoprostanoids

2.3.1.2 Isofuranoids

2.3.1.3 Isoketals

2.3.2 Nomenclature of These Metabolites

2.3.2.1 Isoprostanoids

2.3.2.2 Isofuranoids

2.3.2.3 Isoketals

3 Total Synthesis Strategies

3.1 Isoprostanoids

3.2 Isofuranoids

3.3 Isoketals

4 The Discoveries Behind the Synthesis

4.1 Recent Identification and Biomarkers Roles of Isoprostanes and Isofuranes

4.2 Biological Properties

4.2.1 Phytoprostanes, Isoprostanes, and Neuroprostanes

4.2.2 Epoxy-isoprostanes

5 Conclusion

 
  • References

  • 1 Morrow JD. Hill KE. Burk RF. Nammour TM. Badr KF. Roberts LJ. II. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 9383
  • 2 Jahn U. Galano J.-M. Durand T. Angew. Chem. Int. Ed. 2008; 47: 5894
  • 3 Nugteren DH. Vonkeman H. van Dorp DA. Recl. Trav. Chim. Pays-Bas 1967; 86: 1237
  • 4 Pryor WA. Stanley JP. J. Org. Chem. 1975; 40: 3615
  • 5 Porter NA. Funk MO. J. Org. Chem. 1975; 40: 3614
  • 6 Morrow JD. Harris TM. Roberts LJ. II. Anal. Biochem. 1990; 184: 1
  • 7 Milne GL. Yin H. Hardy KD. Davies SS. Roberts LJ. II. Chem. Rev. 2011; 111: 5973
  • 8 Yin H. Xu L. Porter NA. Chem. Rev. 2011; 111: 5944
  • 9 Kadiiska MB. Gladen BC. Baird DD. Germolec D. Graham LB. Parker CE. Nyska A. Wachsman JT. Ames BN. Basu S. Brot N. Fitzgerald GA. Floyd RA. George M. Heinecke JW. Hatch GE. Hensley K. Lawson JA. Marnett LJ. Morrow JD. Murray DM. Plastaras J. Roberts LJ. II. Rokach J. Shigenaga MK. Sohal RS. Sun J. Tice RR. Van Thiel DH. Wellner D. Walter PB. Tomer KB. Mason RP. Barrett JC. Free Radical Biol. Med. 2005; 38: 698
  • 10 Cracowski J.-L. Durand T. Fundam. Clin. Pharmacol. 2006; 20: 417
  • 11 Ting HJ. Khasawneh FT. J. Biomed. Sci. 2010; 17: 24
  • 12 Roy J. Oger C. Thireau J. Roussel J. Mercier-Touzet O. Faure D. Pinot E. Farah C. Taber DF. Cristol J.-P. Lee JC. Y. Lacampagne A. Galano J.-M. Durand T. Le GuennecJ.-Y. Free Radical Biol. Med. 2015; 86: 269
  • 13 Galano J.-M. Mas E. Barden A. Mori TA. Signorini C. De Felice C. Barrett A. Opere C. Pinot E. Schwedhelm E. Benndorf R. Roy J. Le GuennecJ.-Y. Oger C. Durand T. Prostaglandins Other Lipid Mediators 2013; 107: 95
  • 14 Cuyamendous C. de la Torre A. Lee YY. Leung KS. Guy A. Bultel-Poncé V. Galano J.-M. Lee JC.-Y. Oger C. Durand T. Biochimie 2016; 130: 49
  • 15 Salomon RG. Bi W. Antioxid. Redox Signaling 2015; 22: 1703
  • 16 Imbusch R. Mueller MJ. Free Radical Biol. Med. 2000; 28: 720
  • 17 Lawson JA. Kim S. Powell WS. FitzGerald GA. Rokach J. J. Lipid Res. 2006; 47: 2515
  • 18 VanRollins M. Woltjer RL. Yin H. Morrow JD. Montine TJ. J. Lipid Res. 2008; 49: 995
  • 19 Nourooz-Zadeh J. Liu EH. C. Änggård EE. Halliwell B. Biochem. Biophys. Res. Commun. 1998; 242: 338
  • 20 Fessel JP. Porter NA. Moore KP. Sheller JR. Roberts LJ. II. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 16713
  • 21 Cuyamendous C. Leung KS. Durand T. Lee JC.-Y. Oger C. Galano J.-M. Chem. Commun. 2015; 51: 15696
  • 22 de la Torre A. Lee YY. Oger C. Sangild PT. Durand T. Lee JC.-Y. Galano J.-M. Angew. Chem. Int. Ed. 2014; 53: 6249
  • 23 Song W.-L. Lawson JA. Reilly D. Rokach J. Chang C.-T. Giasson B. FitzGerald GA. J. Biol. Chem. 2008; 283: 6
  • 24 Salomon RG. Subbanagounder G. Singh U. O’Neil J. Hoff HF. Chem. Res. Toxicol. 1997; 10: 750
  • 25 Brame CJ. Salomon RG. Morrow JD. Roberts LJ. II. J. Biol. Chem. 1999; 274: 13139
  • 26 Bernoud-Hubac N. Davies SS. Boutaud O. Montine TJ. Roberts LJ. II. J. Biol. Chem. 2001; 276: 30964
  • 27 Bernoud-Hubac N. Roberts LJ. II. Biochemistry (Moscow) 2002; 41: 11466
  • 28 Davies SS. Amarnath V. Montine KS. Bernoud-Hubac N. Boutaud O. Montine TJ. Roberts LJ. II. FASEB J. 2002; 16: 715
  • 29 Rokach J. Khanapure SP. Hwang S.-W. Adiyaman M. Lawson JA. FitzGerald GA. Prostaglandins 1997; 54: 853
  • 30 Taber DF. Morrow JD. Roberts LJ. II. Prostaglandins 1997; 53: 63
  • 31 Taber DF. Fessel JP. Roberts LJ. II. Prostaglandins Other Lipid Mediators 2004; 73: 47
  • 32 Jahn U. Dinca E. Chem. Eur. J. 2008; 15: 58
  • 33 Jahn U. Dinca E. J. Org. Chem. 2010; 75: 4480
  • 34 Smrček J. Pohl R. Jahn U. Org. Biomol. Chem. 2017; 15: 9408
  • 35 Oger C. Brinkmann Y. Bouazzaoui S. Durand T. Galano J.-M. Org. Lett. 2008; 10: 5087
  • 36 Oger C. Marton Z. Brinkmann Y. Bultel-Poncé V. Durand T. Graber M. Galano J.-M. J. Org. Chem. 2010; 75: 1892
  • 37 Oger C. Bultel-Poncé V. Guy A. Durand T. Galano J.-M. Eur. J. Org. Chem. 2012; 2621
  • 38 Brinkmann Y. Oger C. Guy A. Durand T. Galano J.-M. J. Org. Chem. 2010; 75: 2411
  • 39 Guy A. Oger C. Heppekausen J. Signorini C. De Felice C. Fürstner A. Durand T. Galano J.-M. Chem. Eur. J. 2014; 20: 6374
  • 40 Oger C. Bultel-Poncé V. Guy A. Balas L. Rossi J.-C. Durand T. Galano J.-M. Chem. Eur. J. 2010; 16: 13976
  • 41 Guy A. Flanagan S. Durand T. Oger C. Galano J.-M. Front. Chem. 2015; 3: 41; DOI: 10.3389/fchem.2015.00041
  • 42 Beretta R. Giambelli Gallotti M. Pennè U. Porta A. Gil Romero JF. Zanoni G. Vidari G. J. Org. Chem. 2015; 80: 1601
  • 43 Vázquez-Romero A. Verdaguer X. Riera A. Eur. J. Org. Chem. 2013; 1716
  • 44 Watson AD. Subbanagounder G. Welsbie DS. Faull KF. Navab M. Jung ME. Fogelman AM. Berliner JA. J. Biol. Chem. 1999; 274: 24787
  • 45 Jung ME. Berliner JA. Koroniak L. Gugiu BG. Watson AD. Org. Lett. 2008; 10: 4207
  • 46 Zhong W. Springstead JR. Al-Mubarak R. Lee S. Li R. Emert B. Berliner JA. Jung ME. J. Med. Chem. 2013; 56: 8521
  • 47 Kawashima H. Kobayashi Y. Org. Lett. 2014; 16: 2598
  • 48 Egger J. Bretscher P. Freigang S. Kopf M. Carreira EM. Angew. Chem. Int. Ed. 2013; 52: 5382
  • 49 Egger J. Bretscher P. Freigang S. Kopf M. Carreira EM. J. Am. Chem. Soc. 2014; 136: 17382
  • 50 Weng J. Wang S. Huang L.-J. Luo Z.-Y. Lu G. Chem. Commun. 2015; 51: 10170
  • 51 Jung ME. Berliner JA. Angst D. Yue D. Koroniak L. Watson AD. Li R. Org. Lett. 2005; 7: 3933
  • 52 Jung ME. Kers A. Subbanagounder G. Berliner JA. Chem. Commun. 2003; 196
  • 53 Acharya HP. Kobayashi Y. Angew. Chem. Int. Ed. 2005; 44: 3481
  • 54 Acharya HP. Kobayashi Y. Tetrahedron Lett. 2005; 46: 8435
  • 55 Acharya HP. Kobayashi Y. Tetrahedron Lett. 2004; 45: 1199
  • 56 Acharya HP. Miyoshi K. Kobayashi Y. Org. Lett. 2007; 9: 3535
  • 57 Egger J. Fischer S. Bretscher P. Freigang S. Kopf M. Carreira EM. Org. Lett. 2015; 17: 4340
  • 58 Taber DF. Pan Y. Zhao X. J. Org. Chem. 2004; 69: 7234
  • 59 Taber DF. Gu P. Li R. J. Org. Chem. 2009; 74: 5516
    • 60a Taber DF. Zhang Z. J. Org. Chem. 2006; 71: 926
    • 60b Taber, D. F. University of Delaware, USA. Personnal communication, 2017.
  • 61 Valli M. Bruno P. Sbarbada D. Porta A. Vidari G. Zanoni G. J. Org. Chem. 2013; 78: 5556
  • 62 Oikawa M. Wada A. Okazaki F. Kusumoto S. J. Org. Chem. 1996; 61: 4469
  • 63 de la Torre A. Oger C. Bultel-Poncé V. Durand T. Galano J.-M. Synlett 2016; 27: e11
  • 64 Zheng T. Narayan RS. Schomaker JM. Borhan B. J. Am. Chem. Soc. 2005; 127: 6946
  • 65 de la Torre A. Lee YY. Mazzoni A. Guy A. Bultel-Poncé V. Durand T. Oger C. Lee JC.-Y. Galano J.-M. Chem. Eur. J. 2015; 21: 2442
  • 66 Hoffmann RW. Kahrs BC. Schiffer J. Fleischhauer J. J. Chem. Soc., Perkin Trans. 2 1996; 2407
  • 67 Payne GB. J. Org. Chem. 1962; 27: 3819
  • 68 Rychnovsky SD. Kim J. Tetrahedron Lett. 1991; 32: 7219
  • 69 Cuyamendous C. Leung KS. Bultel-Poncé V. Guy A. Durand T. Galano J.-M. Lee JC. Y. Oger C. Eur. J. Org. Chem. 2017; 2486
  • 70 Subbanagounder G. Salomon RG. Murthi KK. Brame C. Roberts LJ. II. J. Org. Chem. 1997; 62: 7658
  • 71 Roy SC. Nagarajan L. Salomon RG. J. Org. Chem. 1999; 64: 1218
  • 72 Sha W. Salomon RG. J. Org. Chem. 2000; 65: 5315
  • 73 Amarnath V. Amarnath K. Masterson T. Davies S. Roberts LJ. II. Synth. Commun. 2005; 35: 397
  • 74 Candy M. Durand T. Galano J.-M. Oger C. Eur. J. Org. Chem. 2016; 5813
  • 75 Matt C. Wagner A. Mioskowski C. J. Org. Chem. 1997; 62: 234
  • 76 Durand, T.; Galano, J.-M.; Oger, C. Université de Montpellier. Unpublished work, 2017
  • 77 Cheng Y.-S. Yu W. Xu Y. Salomon RG. J. Nat. Prod. 2017; 80: 488
    • 78a De Felice C. Signorini C. Durand T. Oger C. Guy A. Bultel-Poncé V. Galano J.-M. Ciccoli L. Leoncini S. D’Esposito M. Filosa S. Pecorelli A. Valacchi G. Hayek J. J. Lipid Res. 2011; 52: 2287
    • 78b De Felice C. Della Ragione F. Signorini C. Leoncini S. Pecorelli A. Ciccoli L. Scalabrì F. Marracino F. Madonna M. Belmonte G. Ricceri L. De Filippis B. Laviola G. Valacchi G. Durand T. Galano JM. Oger C. Guy A. Bultel-Poncé V. Guy J. Filosa S. Hayek J. D’Esposito M. Neurobiol. Dis. 2014; 68: 66
  • 79 Minghetti L. Salvi R. Salvatori ML. Ajmone-Cat MA. De Nuccio C. Visentin S. Bultel-Poncé V. Oger C. Guy A. Galano J.-M. Greco A. Bernardo A. Durand T. Free Radical Biol. Med. 2014; 73: 41
  • 80 Judé S. Bedut S. Roger S. Pinault M. Champeroux P. White E. Le Guennec J.-Y. Br. J. Pharmacol. 2003; 139: 816
  • 81 Subbanagounder G. Wong JW. Lee H. Faull KF. Miller E. Witztum JL. Berliner JA. J. Biol. Chem. 2002; 277: 7271
  • 82 Cole AL. Subbanagounder G. Mukhopadhyay S. Berliner JA. Vora DK. Arterioscler., Thromb., Vasc. Biol. 2003; 23: 1384
  • 83 Bretscher P. Egger J. Shamshiev A. Trötzmüller M. Köfeler H. Carreira EM. Kopf M. Freigang S. EMBO Mol. Med. 2015; 7: 593