Synthesis 2017; 49(09): 1938-1954
DOI: 10.1055/s-0036-1589493
short review
© Georg Thieme Verlag Stuttgart · New York

Catalytic Enantioselective Desymmetrization of Meso Compounds in Total Synthesis of Natural Products: Towards an Economy of Chiral Reagents

Jérémy Merad
,
Mathieu Candy
,
Jean-Marc Pons
,
Cyril Bressy*
Further Information

Publication History

Received: 20 February 2017

Accepted: 28 February 2017

Publication Date:
23 March 2017 (online)


In memory of our friend and colleague, Professor Teodor Silviu Balaban

Abstract

Meso compounds represent a particular family of achiral molecules bearing elements of chirality. Their desymmetrization through enantioselective catalytic methods usually leads to elaborate chiral building blocks containing several stereogenic elements, which can be a very useful and elegant approach in the context of total synthesis. In the present review, the power of this strategy is illustrated through the different possibilities of catalytic enantioselective desymmetrization. From the combination of the hidden symmetry detection and the catalytic enantioselective transformations a new type of economy emerges: the economy of chiral reagents.

1 Introduction

1.1 What Is a Meso Compound?

1.2 Why Is the Catalytic Enantioselective Desymmetrization of Meso Compounds a Powerful Strategy in Total Synthesis?

1.3 Toward an Economy of Chiral Reagents

2 Enzymatic Desymmetrization

2.1 (–)-Sceptrin (Baran, 2006)

2.2 cis-Solamin (Stark, 2006)

2.3 Crocacin C (2010, Bressy/Pons)

3 Metallocatalyzed Desymmetrization

3.1 Quadrigemine C (2002, Overman)

3.2 (+)-Homochelidonine (2007, Lautens)

3.3 (–)-Cyanthiwigin F (2008, Stoltz)

3.4 [5]-Ladderanoic Acid (2016, Gonzalez-Martinez/Boxer/Burns)

4 Organocatalyzed Desymmetrization

4.1 (+)-Hirsutene (2008, List)

4.2 Alstoscholarines (2011, Neuville/Zhu)

4.3 (–)-Diospongin A (2015, Chuzel/Bressy)

5 Conclusion

 
  • References

  • 1 Current address: University of Vienna, Department of Organic Chemistry, Währinger Strasse 38, 1090 Vienna, Austria.
  • 2 Pérec G. La cloture et autres poèmes . Hachette/Collection P.O.L; Paris: 1980
  • 3 Ceulemans AJ. Group Theory Applied to Chemistry . Springer; Dordrecht: 2013
  • 4 Moss GP. Pure Appl. Chem. 1996; 68: 2193

    • For reviews, see:
    • 5a Zeng X.-P, Cao Z.-Y, Wang YH, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
    • 5b Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MS. W, Dixon DJ. Chem. Soc. Rev. 2016; 45: 5474
    • 5c Wang M, Feng M, Tang B, Jiang X. Tetrahedron Lett. 2014; 55: 7147
    • 5d Garcia-Urdiales E, Alfonso I, Gotor V. Chem. Rev. 2011; 111: PR110
    • 5e Hoffmann RW. Angew. Chem. Int. Ed. 2003; 42: 1096
    • 5f Willis MC. J. Chem. Soc., Perkin Trans. 1 1999; 1765
    • 5g Magnuson SR. Tetrahedron 1995; 51: 2167
    • 5h Ward RS. Chem. Soc. Rev. 1990; 1
  • 6 We talk about local symmetry when a significant portion of the target molecule presents an apparent symmetry, as an example, see: Candy M, Tomas L, Parat S, Héran V, Bienaymé H, Pons J.-M, Bressy C. Chem. Eur. J. 2012; 18: 14267
  • 7 Laumen K, Scheinder M. Tetrahedron Lett. 1984; 25: 5875
    • 8a Vigneron JP, Dhaenes M, Horeau A. Tetrahedron 1973; 29: 1055

    • For the expression concerning multiple enantioselective reactions, see:
    • 8b Rautenstrauch V. Bull. Soc. Chim. Fr. 1994; 131: 515
  • 9 For a review, see: Glueck D. Catal. Sci. Technol. 2011; 1: 1099
  • 10 Merad J, Borkar P, Bouyon-Yenda T, Roux C, Pons J.-M, Parrain J.-L, Chuzel O, Bressy C. Org. Lett. 2015; 17: 2118
  • 11 Trost BM. Science (Washington, D. C.) 1991; 254: 1471
  • 12 Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
  • 13 Burns NZ, Baran PS, Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854
  • 14 Walker RP, Faulkner DJ, Van Engen D, Clardy J. J. Am. Chem. Soc. 1981; 103: 6772
  • 15 Baran PS, Zografos AL, O’Malley DP. J. Am. Chem. Soc. 2004; 126: 3726
  • 16 Baran PS, Li K, O’Malley DP, Mitsos C. Angew. Chem. Int. Ed. 2006; 45: 249
  • 17 Laing J, McCulloch AW, Smith DG, McInnes AG. Can. J. Chem. 1971; 49: 574
  • 18 Baran PS, O’Malley DP, Zografos AL. Angew. Chem. Int. Ed. 2004; 43: 2674
  • 19 For a review, see: Bermejo A, Figadère B, Zafra-Polo M.-C, Barrachina I, Estornell E, Cortes D. Nat. Prod. Rep. 2005; 22: 269

    • For total syntheses of cis-solamin, see:
    • 20a Makabe H, Hattori Y, Tanaka A, Oritani T. Org. Lett. 2002; 4: 1083
    • 20b Cecil AR. L, Brown RC. D. Org. Lett. 2002; 4: 3715
    • 20c Konno H, Okuno Y, Makabe H, Nosaka K, Onishi A, Abe Y, Sugimoto A, Akaji K. Tetrahedron Lett. 2008; 49: 782
  • 21 Göksel H, Stark CB. W. Org. Lett. 2006; 8: 3433
  • 22 Roth S, Göhler S, Cheng H, Stark CB. W. Eur. J. Org. Chem. 2005; 4109
  • 23 Trost BM, Toste FD. Tetrahedron Lett. 1999; 40: 7739

    • Isolation:
    • 24a Kunze B, Jansen R, Höfle G, Reichenbach H. J. Antibiot. 1994; 47: 881
    • 24b Jansen R, Washausen P, Kunze B, Reichenbach H, Höfle G. Eur. J. Org. Chem. 1999; 1085

      Previous total syntheses:
    • 25a Feutrill JT, Lilly MJ, Rizzacasa MA. Org. Lett. 2000; 2: 3365
    • 25b Chakraborty TK, Jayaprakash S. Tetrahedron Lett. 2001; 42: 497
    • 25c Chakraborty TK, Jayaprakash S, Laxman P. Tetrahedron 2001; 57: 9461
    • 25d Dias LC, de Oliveira LG. Org. Lett. 2001; 3: 3951
    • 25e Sirasani G, Paul T, Andrade RB. J. Org. Chem. 2008; 73: 6386
    • 25f Gillis EP, Burke MD. J. Am. Chem. Soc. 2008; 130: 14084

    • For a general review on crocacin syntheses see:
    • 25g Andrade RB. Org. Prep. Proced. Int. 2009; 41: 359

    • Later total syntheses:
    • 25h Cheng M, Roush WR. Org. Lett. 2012; 14: 1880
    • 25i Pasqua AE, Ferrari FD, Hamman C, Liu Y, Crawford JJ, Marquez R. J. Org. Chem. 2012; 77: 6989
    • 25j Infante-Rodriguez C, Domon L, Breuilles P, Uguen D. Bull. Chem. Soc. Jpn. 2015; 88: 308
  • 26 Candy M, Audran G, Bienaymé H, Bressy C, Pons JM. Org. Lett. 2009; 11: 4950
  • 27 Candy M, Audran G, Bienaymé H, Bressy C, Pons JM. J. Org. Chem. 2010; 75: 1354
    • 28a Lubineau A, Bouchain G. Tetrahedron Lett. 1997; 38: 8031
    • 28b Lautens M, Bouchain G. Org. Synth. 2002; 79: 251

      For a review, see:
    • 29a Saicic RN. Tetrahedron 2014; 70: 8183
    • 29b Young IS, Baran PS. Nat. Chem. 2009; 1: 193
    • 29c Hoffmann RW. Synthesis 2006; 3531
    • 30a Schreiber SL, Goulet MT, Schulte G. J. Am. Chem. Soc. 1987; 109: 4718
    • 30b Schreiber SL, Goulet MT. J. Am. Chem. Soc. 1987; 109: 8120
    • 30c Ref. 34.
  • 31 Lebsack AD, Link JT, Overman LE, Stearns BA. J. Am. Chem. Soc. 2002; 124: 9008
  • 32 Libot F, Miet C, Kunesch N, Poisson JE, Pusset J, Sévenet T. J. Nat. Prod. 1987; 50: 468
    • 33a Overman LE, Larrow JF, Stearns BA, Vance JM. Angew. Chem. Int. Ed. 2000; 39: 213

    • The Willis group described recently a straightforward synthesis of meso-chimonanthine in only 3 steps from tryptamine:
    • 33b Snell RH, Woodward RL, Willis MC. Angew. Chem. Int. Ed. 2011; 50: 9116
  • 34 For a review, see: Poss CS, Schreiber SL. Acc. Chem. Res. 1994; 27: 9
    • 35a Ashimori A, Bachand B, Calter MA, Govek SP, Overman LE. J. Am. Chem. Soc. 1998; 120: 6488
    • 35b Oestreich M, Dennison PR, Kodanko JJ, Overman LE. Angew. Chem. Int. Ed. 2001; 40: 1439
  • 36 McManus H, Fleming MJ, Lautens M. Angew. Chem. Int. Ed. 2007; 46: 433
  • 37 Probst JM. Ann. Pharm. (Lemgo, Ger.) 1839; 29: 113
  • 38 Enquist JA. Jr, Stoltz BM. Nature (London) 2008; 453: 1228
  • 39 For review, see: Anstiss M, Holland J, Nelson A, Titchmarsh J. Synlett 2003; 1213

    • For reviews, see:
    • 40a Mohr JT, Ebner DC, Stoltz BM. Org. Biomol. Chem. 2007; 5: 3571
    • 40b Bhat V, Welin ER, Guo X, Stoltz BM. Chem. Rev. 2017; DOI: 10.1021/acs.chemrev.6b00731
  • 41 Mohr JT, Behenna DC, Harned AM, Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
  • 42 Virolleaud M.-A, Bressy C, Piva O. Tetrahedron Lett. 2003; 44: 8081
  • 43 Kim KE, Stoltz BM. Org. Lett. 2016; 18: 5720
  • 44 Mercern JA. M, Cohen CM, Shuken SR, Wagner AM, Smith MW, Moss III FR, Vahala R, Gonzalez-Martinez A, Boxer SG, Burns NZ. J. Am. Chem. Soc. 2016; 138: 15845
    • 45a Mascitti V, Corey EJ. J. Am. Chem. Soc. 2004; 126: 15664
    • 45b Mascitti V, Corey EJ. J. Am. Chem. Soc. 2006; 128: 3118
  • 46 Liu W, Groves JT. J. Am. Chem. Soc. 2010; 132: 12847
  • 47 Guisán-Ceinos M, Parra A, Martín-Heras V, Tortosa M. Angew. Chem. Int. Ed. 2016; 55: 6969
  • 48 Zweifel G, Fisher RP, Snow TJ, Whitney CC. J. Am. Chem. Soc. 1971; 93: 6309
  • 49 Chandler CL, List B. J. Am. Chem. Soc. 2008; 130: 6737
  • 50 Nozoe S, Furukawa J, Sankawa U, Shibata S. Tetrahedron Lett. 1976; 17: 195
    • 51a Hua DH, Venkataraman S, Sinai-Zingde G. J. Am. Chem. Soc. 1985; 107: 4088
    • 51b Weinges K, Reichert H, Huber-Patz U, Irngartinger H. Liebigs Ann. Chem. 1993; 403
    • 51c Banwell MG, Edwards AJ, Harfoot GJ, Jolliffe KA. Tetrahedron 2004; 60: 535
  • 52 Del Zotto A, Baratta W, Verardo G, Rigo P. Eur. J. Org. Chem. 2000; 2795
  • 53 Cai XH, Du ZZ, Luo XD. Org. Lett. 2007; 9: 1817
  • 54 Gerfaud T, Xie C, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2011; 50: 3954
  • 55 Oh SH, Rho HS, Lee JW, Lee JE, Youk SH, Chin J, Song CE. Angew. Chem. Int. Ed. 2008; 47: 7872
  • 56 Nicolaou KC, Claremon DA, Papahatjis DP. Tetrahedron Lett. 1981; 22: 4647
    • 57a Chen C.-Y, Lieberman DR, Larsen RD, Verhoeven TR, Reider PJ. J. Org. Chem. 1997; 62: 2676
    • 57b Jia YX, Zhu J. Synlett 2005; 2469
    • 57c Jia YX, Zhu J. J. Org. Chem. 2006; 71: 7826
  • 58 Horikawa Y, Watanabe M, Fujiwara T, Takeda T. J. Am. Chem. Soc. 1997; 119: 1127
  • 59 Isolation: Yin J, Kouda K, Tezuka Y, Trans QL, Miyahara T, Chen Y, Kadota S. Planta Med. 2004; 70: 54

    • Total syntheses of (–)-diospongin A:
    • 60a Chandrasekhar S, Shyamsunder T, Prakash JS, Prabhakar A, Jagadeesh B. Tetrahedron Lett. 2006; 47: 47
    • 60b Bressy C, Allais F, Cossy J. Synlett 2006; 3455
    • 60c Jennings MP, Sawant KB. J. Org. Chem. 2006; 71: 7911
    • 60d Yadav JS, Padmavani B, Reddy BV. S, Venugopal C, Rao AB. Synlett 2007; 2045
    • 60e Bates RW, Song P. Tetrahedron 2007; 63: 4497
    • 60f Kawai N, Hande SM, Uenishi J. Tetrahedron 2007; 63: 9049
    • 60g Wang H, Shuhler BJ, Xian M. Synlett 2008; 2651
    • 60h Sabitha G, Padmaja P. Helv. Chim. Acta 2008; 91: 2235
    • 60i Kumaraswamy G, Ramakrishna G, Naresh P, Jagadeesh B, Sridhar B. J. Org. Chem. 2009; 74: 8468
    • 60j Anada M, Washio T, Watanabe Y, Takeda K, Hashimoto S. Eur. J. Org. Chem. 2010; 6850
    • 60k Kumar RN, Meshram HM. Tetrahedron Lett. 2011; 52: 1003
    • 60l Stefan E, Nalin AP, Taylor RE. Tetrahedron 2013; 69: 7706
    • 60m Zuniga A, Perez M, Gandara Z, Fall A, Gomez G, Fall Y. ARKIVOC 2015; (vii): 195

      For reviews, see:
    • 61a Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; 5589
    • 61b Birman VB. Aldrichimica Acta 2016; 49: 23
    • 62a Birman VB, Jiang H, Li X. Org. Lett. 2007; 9: 3237
    • 62b Roux C, Candy M, Pons J.-M, Chuzel O, Bressy C. Angew. Chem. Int. Ed. 2014; 53: 766