Synthesis 2017; 49(07): 1419-1443
DOI: 10.1055/s-0036-1589478
review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in Cobalt Catalyzed Carbon–Carbon and Carbon–Heteroatom Bond Formation via C–H Bond Functionalization

Muhammad Usman
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi′an 710127, P. R. of China   Email: guanzhh@nwu.edu.cn
,
Zhi-Hui Ren
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi′an 710127, P. R. of China   Email: guanzhh@nwu.edu.cn
,
Yao-Yu Wang
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi′an 710127, P. R. of China   Email: guanzhh@nwu.edu.cn
,
Zheng-Hui Guan*
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi′an 710127, P. R. of China   Email: guanzhh@nwu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 19 September 2016

Accepted after revision: 19 October 2016

Publication Date:
06 February 2017 (online)


Abstract

Cobalt catalysts have evolved to be seen as versatile eco-compatible and economical catalysts in organic synthesis in recent years. Cobalt-catalyzed reactions are undoubtedly a classic in synthetic chemistry for the formation of carbon–carbon and carbon–heteroatom bonds. Another important aspect in this field is catalyst variants, such as low-valent and high-valent cobalt catalysts. This review summarizes the recent progress and synthetic utility of low-valent and high-valent cobalt catalysts towards C–H functionalization processes achieving C–C, C–O, C–N and C–B bond formation. Mechanistic insight is also discussed, with the goal of serving as a stepping stone for further development in this field. In addition, Csp3–H bond functionalization reactions provide many opportunities for novel synthesis approaches.
1 Introduction
2 Carbon–Carbon Bond Formation

2.1 Csp2–Csp3 Bond Formation

2.2 Csp2–Csp2 Bond Formation

3 Carbon–Nitrogen Bond Formation

4 Csp3–H Bond Functionalization

5 Carbon–Oxygen Bond Formation

6 Carbon–Boron Bond Formation

7 Conclusion

 
  • References

    • 1a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1b Ackermann L. Org. Process Res. Dev. 2015; 19: 260
    • 1c Mercier LG, Leclerc M. Acc. Chem. Res. 2013; 46: 1597
    • 2a Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2b Willis MC. Chem. Rev. 2010; 110: 725
    • 2c Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 2d Gunay A, Theopold KH. Chem. Rev. 2010; 110: 1060
    • 2e Kakiuchi F, Kochi T. Synthesis 2008; 3013
    • 2f Priyanka, Sharma RK, Katiyar D. Synthesis 2016; 48: 2303
    • 3a Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 3b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3c Sehnal P, Taylor RJ. K, Fairlamb IJ. S. Chem. Rev. 2010; 110: 824
    • 3d Fang X, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 14089
    • 3e Hasegawa N, Charra V, Inoue S, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 8070
    • 4a Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 4b Yu J.-Q, Giri R, Chen X. Org. Biomol. Chem. 2006; 4: 4041
    • 4c Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. Acc. Chem. Res. 1995; 28: 154
    • 4d Hartwig JF. Nature 2008; 455: 314
    • 5a Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
    • 5b Lu H, Zhang XP. Chem. Soc. Rev. 2011; 40: 1899
    • 5c Ghosh A, Johnson KF, Vickerman KL, Walker JA, Stanley LM. Org. Chem. Front. 2016; 3: 639
    • 5d Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 5e Sun J, Deng L. ACS Catal. 2016; 6: 290
    • 5f Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 5g Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 5h Lu X.-B, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462
    • 5i Röse P, Hilt G. Synthesis 2016; 48: 463
    • 5j Gensch J, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 6 Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
  • 7 Hyster TK. Catal. Lett. 2015; 145: 458
  • 8 Jiao L, Herdtweck E, Bach T. J. Am. Chem. Soc. 2012; 134: 14563
  • 9 Wang X, Lane BS, Sames D. J. Am. Chem. Soc. 2005; 127: 4996
    • 10a Nakao Y, Kanyiva KS, Oda S, Hiyama T. J. Am. Chem. Soc. 2006; 128: 8146
    • 10b Grimster NP, Gauntlett C, Godfrey CR. A, Gaunt MJ. Angew. Chem. Int. Ed. 2005; 44: 3125
    • 11a Ackermann L. J. Org. Chem. 2014; 79: 8948
    • 11b Yang J, Yoshikai N. Angew. Chem. Int. Ed. 2016; 55: 2870
    • 12a Andou T, Saga Y, Komai H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 3213
    • 12b Gao K, Paira R, Yoshikai N. Adv. Synth. Catal. 2014; 356: 1486
    • 12c Moselage M, Sauermann N, Richter SC, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
    • 12d Sauermann N, González MJ, Ackermann L. Org. Lett. 2015; 17: 5316
    • 12e Liu X.-G, Zhang S.-S, Jiang C.-Y, Wu J.-Q, Li Q, Wang H. Org. Lett. 2015; 17: 5404
    • 12f Wang S, Hou J.-T, Feng M.-L, Zhang X.-Z, Chen S.-Y, Yu X.-Q. Chem. Commun. 2016; 52: 2709
    • 12g Mei R, Wang H, Warratz S, Macgregor SA, Ackermann L. Chem. Eur. J. 2016; 22: 6759
    • 13a Ackermann L. Chem. Commun. 2010; 46: 4866
    • 13b Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 13c Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
    • 14a Chen Q, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
    • 14b Ilies L, Chen Q, Zeng X, Nakamura E. J. Am. Chem. Soc. 2011; 133: 5221
  • 15 Gao K, Yoshikai N. Angew. Chem. Int. Ed. 2011; 50: 6888
  • 16 Gao K, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 400
  • 17 Lee P.-S, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 1240
  • 18 Ding Z, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 8574; and references therein
  • 19 Gao K, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
    • 20a Ohmiya H, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2006; 128: 1886
    • 20b Ohmiya H, Wakabayashi K, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2207
  • 21 Gandeepan P, Cheng C.-H. Acc. Chem. Res. 2015; 48: 1194
    • 22a Santhoshkumar R, Mannathan S, Cheng C.-H. Org. Lett. 2014; 16: 4208
    • 22b Santhoshkumar R, Mannathan S, Cheng C.-H. J. Am. Chem. Soc. 2015; 137: 16116
  • 23 Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4684
    • 24a Fukumoto Y, Sawada K, Hagihara M, Chatani N, Murai S. Angew. Chem. Int. Ed. 2002; 41: 2779
    • 24b Kuninobu Y, Nishina Y, Nakagawa C, Takai K. J. Am. Chem. Soc. 2006; 128: 12376
    • 24c Kuninobu Y, Nishina Y, Takeuchi T, Takai K. Angew. Chem. Int. Ed. 2007; 46: 6518
    • 24d Li B.-J, Shi Z.-J. Chem. Sci. 2011; 2: 488
    • 24e Gao K, Yoshikai N. Chem. Commun. 2012; 48: 4305
    • 25a Hesp KD, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2011; 133: 11430
    • 25b Zhu C, Xie W, Falck JR. Chem. Eur. J. 2011; 17: 12591
    • 25c Du Y, Hyster TK, Rovis T. Chem. Commun. 2011; 47: 12074
    • 26a Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
    • 26b Tauchert ME, Incarvito CD, Rheingold AL, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2012; 134: 1482
    • 26c Li Y, Li B.-J, Wang W.-H, Huang W.-P, Zhang X.-S, Chen K, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 2115
    • 26d Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Chem. Eur. J. 2013; 19: 9142
  • 27 Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
  • 28 Sun B, Yoshino T, Matsunaga S, Kanai M. Adv. Synth. Catal. 2014; 356: 1491
  • 29 Gensch T, Vásquez-Céspedes S, Yu D.-G, Glorius F. Org. Lett. 2015; 17: 3714
  • 30 Moselage M, Sauermann N, Koeller J, Liu W, Gelman D, Ackermann L. Synlett 2015; 26: 1596
  • 31 Suzuki Y, Sun B, Sakata K, Yoshino T, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2015; 54: 9944
  • 32 Zell D, Bu Q, Feldt M, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 7408
  • 33 Bunno Y, Murakami N, Suzuki Y, Kanai M, Yoshino T, Matsunaga S. Org. Lett. 2016; 18: 2216
    • 34a Yao T, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 775
    • 34b Zhao D, Kim JH, Stegemann L, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 4508
  • 35 Liu X.-G, Zhang S.-S, Wu J.-Q, Li Q, Wang H. Tetrahedron Lett. 2015; 56: 4093
  • 36 Gao K, Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2010; 132: 12249
  • 37 Ding Z, Yoshikai N. Org. Lett. 2010; 12: 4180
    • 38a Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 17283
    • 38b Yamakawa T, Yoshikai N. Tetrahedron 2013; 69: 4459
  • 39 Fallon BJ, Derat E, Amatore M, Aubert C, Chemla F, Ferreira F, Perez-Luna A, Petit M. J. Am. Chem. Soc. 2015; 137: 2448
  • 40 Ding Z, Yoshikai N. Angew. Chem. Int. Ed. 2012; 51: 4698
  • 41 Fallon BJ, Derat E, Amatore M, Aubert C, Chemla F, Ferreira F, Perez-Luna A, Petit M. Org. Lett. 2016; 18: 2292
    • 42a Colby DA, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2008; 130: 3645
    • 42b Duttwyler S, Lu C, Rheingold AL, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2012; 134: 4064
    • 42c Yamakawa T, Yoshikai N. Org. Lett. 2013; 15: 196
  • 43 Fallon BJ, Garsi J.-B, Derat E, Amatore M, Aubert C, Petit M. ACS Catal. 2015; 5: 7493
  • 44 Grigorjeva L, Daugulis O. Org. Lett. 2015; 17: 1204
    • 45a Song W, Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251
    • 45b Punji B, Song W, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
  • 46 Gao K, Lee P.-S, Long C, Yoshikai N. Org. Lett. 2012; 14: 4234
    • 47a Seki M. ACS Catal. 2014; 4: 4047
    • 47b Goossen LJ, Melzer B. J. Org. Chem. 2007; 72: 7473
    • 47c Diers E, Kumar NY. P, Mejuch T, Marek I, Ackermann L. Tetrahedron 2013; 69: 4445
    • 47d Seki M. ACS Catal. 2011; 1: 607
  • 48 Li J, Ackermann L. Chem. Eur. J. 2015; 21: 5718
  • 49 Li B, Wu Z.-H, Gu Y.-F, Sun C.-L, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 1109
  • 50 Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
    • 51a Li X, Gong X, Zhao M, Song G, Deng J, Li X. Org. Lett. 2011; 13: 5808
    • 51b Dai H.-X, Stepan AF, Plummer MS, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
    • 51c Kerr WJ, Reid M, Tuttle T. ACS Catal. 2015; 5: 402
    • 51d Wang D, Wang F, Song G, Li X. Angew. Chem. Int. Ed. 2012; 51: 12348
    • 51e Kalsi D, Sundararaju B. Org. Lett. 2015; 17: 6118
  • 52 Zhang L.-B, Hao X.-Q, Liu Z.-J, Zheng X.-X, Zhang S.-K, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 10012
  • 53 Ikemoto H, Yoshino T, Sakata K, Matsunaga S, Kanai M. J. Am. Chem. Soc. 2014; 136: 5424
  • 54 Suzuki Y, Sun B, Yoshino T, Kanai M, Matsunaga S. Tetrahedron 2015; 71: 4552
    • 55a Pawar AB, Agarwal D, Lade DM. J. Org. Chem. 2016; 81: 11409
    • 55b Wang J, Zha S, Chen K, Zhu J. Org. Chem. Front. 2016; 3: 1281
    • 56a Sun B, Yoshino T, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
    • 56b Wang H, Koeller J, Liu W, Ackermann L. Chem. Eur. J. 2015; 21: 15525
  • 57 Sen M, Kalsi D, Sundararaju B. Chem. Eur. J. 2015; 21: 15529
  • 58 Yan Q, Chen Z, Liu Z, Zhang Y. Org. Chem. Front. 2016; 3: 678
  • 59 Lu Q, Vásquez-Cáspedes S, Gensch T, Glorius F. ACS Catal. 2016; 6: 2352
  • 60 Prakash S, Muralirajan K, Cheng C.-H. Angew. Chem. Int. Ed. 2016; 55: 1844; and references therein
  • 61 Li J, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 8551
    • 62a Zhang Z.-Z, Liu B, Xu J.-W, Yan S.-Y, Shi B.-F. Org. Lett. 2016; 18: 1776
    • 62b Lerchen A, Vásquez-Cáspedes S, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
    • 62c Wang H, Moselage M, González MJ, Ackermann L. ACS Catal. 2016; 6: 2705
    • 63a Wang F, Wang H, Wang Q, Yu S, Li X. Org. Lett. 2016; 18: 1306
    • 63b Wang H, Lorion MM, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 10386
    • 63c Mei R, Loup J, Ackermann L. ACS Catal. 2016; 6: 793; and references therein
  • 64 Sun B, Yoshino T, Matsunaga S, Kanai M. Chem. Commun. 2015; 51: 4659
  • 65 Patel P, Chang S. ACS Catal. 2015; 5: 853
    • 66a Park J, Chang S. Angew. Chem. Int. Ed. 2015; 54: 14103
    • 66b Liang Y, Liang Y.-F, Tang C, Yuan Y, Jiao N. Chem. Eur. J. 2015; 21: 16395
  • 67 Wang X, Lerchen A, Glorius F. Org. Lett. 2016; 18: 2090; and references therein
  • 68 Tilly D, Dayaker G, Bachu P. Catal. Sci. Technol. 2014; 4: 2756

    • For references on Co(I)-catalysis, see:
    • 69a Hung-Low F, Krogman JP, Tyeb JW, Bradley CA. Chem. Commun. 2012; 48: 368
    • 69b Dugan TR, Sun X, Rybak-Akimova EV, Olatunji-Ojo O, Cundari TR, Holland PL. J. Am. Chem. Soc. 2011; 133: 12418
    • 69c Hummel JR, Ellman JA. J. Am. Chem. Soc. 2015; 137: 490; and references therein
  • 70 Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
  • 71 Lu H, Li C, Jiang H, Lizardi CL, Zhang XP. Angew. Chem. Int. Ed. 2014; 53: 7028; and references therein
  • 72 Villanueva O, Weldy NM, Blakey SB, MacBeth CE. Chem. Sci. 2015; 6: 6672
  • 73 Sharma SK, May PS, Jones MB, Lense S, Hardcastle KI, MacBeth CE. Chem. Commun. 2011; 47: 1827
  • 74 Wu X, Yang K, Zhao Y, Sun H, Li G, Ge H. Nat. Commun. 2015; 6: 6462
  • 75 Zhang J, Chen H, Lin C, Liu Z, Wang C, Zhang Y. J. Am. Chem. Soc. 2015; 137: 12990
  • 76 Sen M, Emayavaramban B, Barsu N, Premkumar JR, Sundararaju B. ACS Catal. 2016; 6: 2792
  • 77 Yang J, Yoshikai N. J. Am. Chem. Soc. 2014; 136: 16748
  • 78 Zhang L.-B, Hao X.-Q, Zhang S.-K, Liu Z.-J, Zheng X.-X, Gong J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 272
  • 79 Guo Y.-F, Xu B.-H, Li T, Wang L, Zhang S.-J. Org. Chem. Front. 2016; 3: 47
  • 80 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 81a Zhang L, Zuo Z, Wan X, Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
    • 81b Zuo Z, Huang Z. Org. Chem. Front. 2016; 3: 434
    • 81c Zhang L, Zuo Z, Leng X, Huang Z. Angew. Chem. Int. Ed. 2014; 53: 2696
    • 81d Ruddy AJ, Sydora OL, Small BL, Stradiotto M, Turculet L. Chem. Eur. J. 2014; 20: 13918
    • 81e Chen J, Xi T, Ren X, Cheng B, Guo J, Lu Z. Org. Chem. Front. 2014; 1: 1306
    • 81f Zhang L, Huang Z. J. Am. Chem. Soc. 2015; 137: 15600
    • 82a Zhang G, Scott BL, Hanson SK. Angew. Chem. Int. Ed. 2012; 51: 12102
    • 82b Chen J, Chen C, Ji C, Lu Z. Org. Lett. 2016; 18: 1594
    • 82c Monfette S, Turner ZR, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2012; 134: 4561
    • 82d Zhang G, Vasudevan KV, Scott BL, Hanson SK. J. Am. Chem. Soc. 2013; 135: 8668
    • 82e Friedfeld MR, Shevlin M, Hoyt JM, Krska SW, Tudge MT, Chirik PJ. Science 2013; 342: 1076
  • 83 Atienza CC. H, Diao T, Weller KJ, Nye SA, Lewis KM, Delis JG. P, Boyer JL, Roy AK, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 12108

    • For cobalt-catalyzed hydrosilylation, see:
    • 84a Mo Z, Xiao J, Gao Y, Deng L. J. Am. Chem. Soc. 2014; 136: 17414
    • 84b Chen C, Hecht MB, Kavara A, Brennessel WW, Mercado BQ, Weix DJ, Holland PL. J. Am. Chem. Soc. 2015; 137: 13244
    • 84c Mo Z, Liu Y, Deng L. Angew. Chem. Int. Ed. 2013; 52: 10845
  • 85 Chen C, Dugan TR, Brennessel WW, Weix DJ, Holland PL. J. Am. Chem. Soc. 2014; 136: 945
  • 86 Komeyama K, Kiguchi S, Takaki K. Chem. Commun. 2016; 52: 7009
  • 87 Obligacion JV, Chirik PJ. J. Am. Chem. Soc. 2013; 135: 19107
  • 88 Obligacion JV, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 4133