Synthesis 2016; 48(23): 4038-4049
DOI: 10.1055/s-0036-1589457
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Asymmetric Nozaki–Hiyama–Kishi Reaction

Qingshan Tian
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 2000032, P. R. of China
,
Guozhu Zhang*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 2000032, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 18 May 2016

Accepted after revision: 01 July 2016

Publication Date:
24 August 2016 (online)


Abstract

This review will survey recent developments in the area of the catalytic asymmetric Nozaki–Hiyama–Kishi reaction. The content will be classified according to reaction type as follows: asymmetric allylation, asymmetric propargylation, asymmetric alkynylation, asymmetric vinylation, and asymmetric alkylation.

1 Introduction

2 Asymmetric Allylation

3 Asymmetric Propargylation and Asymmetric Homoallenylation

4 Asymmetric Alkynylation

5 Asymmetric Vinylation and Arylation

6 Asymmetric Alkylation

7 Intramolecular Nozaki–Hiyama–Kishi Reaction

8 Conclusion and Perspectives

 
  • References

    • 1a Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
    • 1b Takai K, Kimura K, Kuroda T, Hiyama T, Nozaki H. Tetrahedron Lett. 1983; 24: 5281
    • 1c Jin H, Uenishi J.-I, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
    • 1d Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
    • 2a Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
    • 2b Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 2533
  • 3 Hargaden GC, Guiry PG In Stereoselective Synthesis of Drugs and Natural Products . Vol. 1. Andrushko V, Andrushko N. Wiley-VCH; Weinheim: 2013. Chap. 12, 347
  • 4 Hargaden GC, Guiry PJ. Adv. Synth. Catal. 2007; 349: 2407
  • 5 Hargaden GC, Guiry PG In Innovative Catalysis in Organic Synthesis . Andersson P. Wiley-VCH; Weinheim: 2012: 279
  • 6 Yus M, Gonzalez-Gomez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
  • 7 Chen C, Tagami K, Kishi Y. J. Org. Chem. 1995; 60: 5386
  • 8 Sugimoto K, Aoyagi S, Kibayashi C. J. Org. Chem. 1997; 62: 2322
  • 9 Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew. Chem. Int. Ed. 1999; 38: 3357
  • 10 Bandini M, Cozzi PG, Licciulli S, Umani-Ronchi A. Synthesis 2004; 409
  • 11 Berkessel A, Menche D, Sklorz CA, Schroder M, Paterson I. Angew. Chem. Int. Ed. 2003; 42: 1032
  • 12 White JD, Shaw S. Org. Lett. 2011; 13: 2488
  • 13 Kurosu M, Lin M.-H, Kishi Y. J. Am. Chem. Soc. 2004; 126: 12248
  • 14 Zhang Z, Huang J, Ma B, Kishi Y. Org. Lett. 2008; 10: 3073
  • 15 Xia G, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 2554
  • 16 Inoue M, Suzuki T, Nakada M. J. Am. Chem. Soc. 2003; 125: 1140
  • 17 Inoue M, Suzuki T, Nakada M. Synlett 2003; 570
  • 18 Deng Q.-H, Wadepohl H, Gade LH. Chem. Eur. J. 2011; 17: 14922
  • 19 McManus HA, Cozzi PG, Guiry PJ. Adv. Synth. Catal. 2006; 348: 551
  • 20 Hargaden GC, McManus HA, Cozzi PG, Guiry PJ. Org. Biomol. Chem. 2007; 5: 763
  • 21 Hargaden GC, O’Sullivan TP, Guiry PJ. Org. Biomol. Chem. 2008; 6: 562
  • 22 Deng Q.-H, Melen RL, Gade LH. Acc. Chem. Res. 2014; 47: 3162
  • 23 Inoue M, Suzuki T, Kinoshita A, Nakada M. Chem. Rec. 2008; 8: 169
  • 24 Chen W, Yang Q, Zhou T, Tian Q, Zhang G. Org. Lett. 2015; 17: 5236
  • 25 Tian Q, Bai J, Chen B, Zhang G. Org. Lett. 2016; 18: 1828
  • 26 Lee J.-Y, Miller JJ, Hamilton SS, Sigman MS. Org. Lett. 2005; 7: 1837
  • 27 Miller JJ, Sigman MS. J. Am. Chem. Soc. 2007; 129: 2752
  • 28 Bandini M, Cozzi PG, Umani-Ronchi A. Polyhedron 2000; 19: 537
  • 29 Inoue M, Nakada M. Org. Lett. 2004; 6: 2977
  • 30 Usanov DL, Yamamoto H. Angew. Chem. Int. Ed. 2010; 49: 8169
  • 31 Xia G, Yamamoto H. J. Am. Chem. Soc. 2007; 129: 496
  • 32 Coeffard V, Aylward M, Guiry PJ. Angew. Chem. Int. Ed. 2009; 48: 9152
  • 33 Liu S, Kim JT, Dong C.-G, Kishi Y. Org. Lett. 2009; 11: 4520
  • 34 Harper KC, Sigman MS. Science 2011; 333: 1875
  • 35 Usanov DL, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 1286
    • 36a Choi H.-w, Demeke D, Kang F.-A, Kishi Y, Nakajima K, Nowak P, Wan Z.-K, Xie C. Pure Appl. Chem. 2003; 75: 1
    • 36b Liu X, Li X, Chen Y, Hu Y, Kishi Y. J. Am. Chem. Soc. 2012; 134: 6136
  • 37 Choi H, Nakajima K, Demeke D, Kang F.-A, Jun H.-S, Wan Z.-K, Kishi Y. Org. Lett. 2002; 4: 4435
  • 38 Kim D.-S, Dong C.-G, Kim JT, Guo H, Huang J, Tiseni PS, Kishi Y. J. Am. Chem. Soc. 2009; 131: 15636
  • 39 Guo H, Dong C.-G, Kim D.-S, Urabe D, Wang J, Kim JT, Liu X, Sasaki T, Kishi Y. J. Am. Chem. Soc. 2009; 131: 15387
  • 40 Namba K, Kishi Y. J. Am. Chem. Soc. 2005; 127: 15382
    • 41a Nishikawa T, Shibuya S, Hosokawa S, Isobe M. Synlett 1994; 485
    • 41b Wang J, DeClercq PJ. Angew. Chem., Int. Ed. Engl. 1995; 34: 1749
  • 42 Guella G, Pietra FJ. J. Chem. Soc., Chem. Commun. 1993; 1539
  • 43 Williams DR, Walsh MJ, Miller NA. J. Am. Chem. Soc. 2009; 131: 9038
  • 44 Mohapatra DK, Das PP, Pattanayak MR, Gayatri G, Sastry GN, Yadav JS. Eur. J. Org. Chem. 2010; 4775
  • 45 Pettit GR, Cichacz ZA, Gao F, Boyd MR, Schmidt JM. J. Chem. Soc., Chem. Commun. 1994; 1111
  • 46 Zhu W, Jiménez M, Jung W.-H, Camarco DP, Balachandran R, Vogt A, Day BW, Curran DP. J. Am. Chem. Soc. 2010; 132: 9175
  • 47 Baker TM, Edmonds DJ, Hamilton D, O’Brien CJ, Procter DJ. Angew. Chem. Int. Ed. 2008; 47: 5631
  • 48 Pospisil J, Muller C, Fürstner A. Chem. Eur. J. 2009; 15: 5956