Synlett 2017; 28(01): 30-35
DOI: 10.1055/s-0036-1589403
account
© Georg Thieme Verlag Stuttgart · New York

A Roadmap toward Synthetic Protolife

Robert Pascala, Addy Pross*b, c
  • aInstitut des Biomolecules Max Mousseron, UMR5247 CNRS-University of Montpellier-ENSCM, CC17006 Place E. Bataillon Montpellier 34095, France
  • bDepartment of Chemistry, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
  • cNYU Shanghai, 1555 Century Avenue, Pudong New Area, Shanghai 200122, P. R. of China   Email: pross@bgu.ac.il
Further Information

Publication History

Received: 06 September 2016

Accepted after revision: 06 October 2016

Publication Date:
25 October 2016 (eFirst)

Abstract

The origin-of-life problem remains one of the major scientific riddles of all time and the difficulties in attempts to synthesize simple protolife reflect yet one additional facet of this long-standing problem. In this review we argue that a strategy for the synthesis of protolife requires the characterization of the physicochemical state of life’s primordial beginnings, not just its material composition. It is through the concept of dynamic kinetic stability (DKS) that key elements of that state can be specified. A protolife system potentially able to evolve toward biological complexity would need to be both driven by exponential replicative growth as well as to be in a dynamic, non-equilibrium and energy-fueled (DKS) state. With the recent discovery that DKS systems are experimentally accessible and show remarkably different physical and chemical characteristics to regular chemical systems, the door to the possible synthesis of simple protolife now appears to be open.

 
  • References and Notes

  • 1 Schrödinger E. What is life? . Cambridge University Press; Cambridge; 1944
  • 2 Wigner E. Found. Phys. 1970; 1: 35
    • 3a Bohr N. Nature 1933; 131: 421
    • 3b Bohr N. Nature 1933; 131: 457
  • 4 Pross A. What is life? How chemistry becomes biology . Oxford University Press; Oxford; 2016
    • 5a Troland LT. Am. Nat. 1917; 51: 321
    • 5b Troland LT. Monist 1914; 24: 92
  • 6 Mills DR, Peterson RL, Spiegelman S. Proc. Natl. Acad. Sci. U.S.A. 1967; 58: 217
  • 7 Joyce GF. Angew. Chem. Int. Ed. 2007; 46: 6420
  • 8 Eigen M, Schuster P. The hypercycle. A principle of natural selforganization . Springer; Berlin; 1979
  • 9 Pross A. J. Syst. Chem. 2011; 2: 1
  • 10 Adamala K, Szostak JW. Science 2013; 342: 1098
  • 11 Nicolis G, Prigogine I. Self-organization in nonequilibrium systems . Wiley; New York; 1977
  • 12 Kauffman SA. Investigations . Oxford University Press; Oxford; 2000
    • 13a von Kiedrowski G, Otto S, Herdewijn P. J. Syst. Chem. 2010; 1: 1
    • 13b Ludlow R, Otto S. Chem. Soc. Rev. 2008; 37: 101
    • 13c Dadon Z, Wagner N, Ashkenasy G. Angew. Chem. Int. Ed. 2008; 47: 6128
  • 14 A comment regarding the frequent mixed usage of the terms: replication, reproduction, autocatalysis. While these terms do have different meanings in different chemical and biological contexts, within the context of the DKS definition these differences are of secondary importance. Within the DKS formulation what is important is that the entire system is reproduced in a way that allows for exponential growth and variation. Whether that exponential growth is achieved by the template replication of some nucleic acid oligomer or by a holistic autocatalytic pathway achieved through catalytic closure or through biological reproduction is less relevant.
    • 15a Pross A. Isr. J. Chem. 2016; 56: 83
    • 15b Pascal R, Pross A. Chem. Commun. 2015; 5: 16160
    • 15c Pascal R. Isr. J. Chem. 2015; 55: 865
    • 15d Pascal R, Pross A. J. Syst. Chem. 2014; 5: 3
    • 15e Pross A, Pascal R. Open Biol. 2013; 3: 120190
    • 15f Pascal R, Pross A, Sutherland JD. Open Biol. 2013; 3: 130156
    • 15g Pascal R In Astrochemistry and Astrobiology: Physical Chemistry in Action . Smith IW. L, Cockell CS, Leach S. Springer; Berlin; 2013: 243
    • 15h Pascal R. J. Syst. Chem. 2012; 3: 3
    • 15i Pross A. Chem. Eur. J. 2009; 15: 8374
    • 15j Pross A. Pure Appl. Chem. 2005; 77: 1905
    • 15k Pross A, Khodorkovsky V. J. Phys. Org. Chem. 2004; 17: 312
  • 16 Szathmáry E. Gladkih I. 1989; 138: 55
  • 17 Lifson S. J. Mol. Evol. 1997; 44: 1
    • 18a Boekhoven J, Hendriksen WE, Koper GJ. M, Eelkema R, van Esch JH. Science 2015; 349: 1075
    • 18b Boekhoven J, Brizard AM, Kowlgi KN. K, Koper GJ. M, Eelkema R, van Esch JH. Angew. Chem. Int. Ed. 2010; 49: 4825
  • 19 van der Zwaag D, Meijer EW. Science 2015; 349: 1056
  • 20 Whitesides GM, Grzybowski B. Science 2002; 295: 2418
  • 21 Karsenti E. Nat. Rev. Mol. Cell Biol. 2008; 9: 255
  • 22 Pross A. J. Mol. Evol. 2013; 76: 185
  • 23 Corning PA, Szathmáry E. J. Theor. Biol. 2015; 371: 45
  • 24 Gell-Mann M. Complexity 2015; 1: 16
  • 25 Adami C. BioEssays 2002; 24: 1085
  • 26 Pross A. J. Theor. Biol. 2003; 220: 393