Synthesis 2017; 49(19): 4414-4433
DOI: 10.1055/s-0036-1589094
short review
© Georg Thieme Verlag Stuttgart · New York

Reactions of Arynes Involving Transition-Metal Catalysis

Minghao Feng
a  Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. of China   Email: [email protected]
,
a  Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. of China   Email: [email protected]
b  State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. of China
c  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful for financial support provided by NSFC (21672069, 21472050), DFMEC (20130076110023), Fok Ying Tung Education Foundation (141011), Program for Shanghai Rising Star (15QA1401800), Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the National Program for Support of Top-notch Young Professionals.

Further Information

Publication History

Received: 09 May 2017

Accepted after revision: 12 July 2017

Publication Date:
22 August 2017 (online)


Abstract

Arynes are important building blocks for introducing aromatic rings into molecules and they are frequently utilized in syntheses. Historically, arynes were generated under harsh conditions and this limited their use. Arynes can now be generated under milder conditions, e.g. from 2-(trimethylsilyl)phenyl triflate, and utilized in transition-metal­ catalyzed reactions such as [2+2+2] reactions, insertion into σ-bonds, cascade cyclizations and C–H activation reactions. This short review focuses on transition-metal-catalyzed reactions relevant to aryne intermediates generated from 2-(trimethylsilyl)phenyl triflates and other aryne precursors.

1 Introduction

2 [2+2+2] Reactions

3 Aryne Insertion into a σ-Bond

4 Cascade Cyclizations

5 C–H Activation

6 Multicomponent Reactions (MCRs)

7 Conclusion

 
  • References

    • 1a Peña D. Pérez D. Guitián E. Heterocycles 2007; 74: 89
    • 1b Tadross PM. Stoltz BM. Chem. Rev. 2012; 112: 3550
    • 1c Gampe CM. Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3766
    • 1d Dubrovskiy AV. Markina NA. Larock RC. Org. Biomol. Chem. 2013; 11: 191
    • 1e Wu C. Shi F. Asian J. Org. Chem. 2013; 2: 116
    • 1f Bhunia A. Biju AT. Synlett 2014; 25: 608
    • 1g Goetz AE. Shah TK. Garg NK. Chem. Commun. 2015; 51: 34
    • 1h Yoshida S. Hosoya T. Chem. Lett. 2015; 44: 1450
    • 1i García-López J.-A. Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
  • 2 Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett. 1983; 1211
    • 3a McLain SJ. Schrock RR. Sharp PR. Churchill MR. Youngs WJ. J. Am. Chem. Soc. 1979; 101: 263
    • 3b Bennett MA. Hambley TW. Roberts NK. Robertson GB. Organometallics 1985; 4: 1992
    • 3c Buchwald SL. Watson BT. J. Am. Chem. Soc. 1986; 108: 7411
    • 3d Bennett MA. Schwemlein HP. Angew. Chem., Int. Ed. Engl. 1989; 28: 1296
    • 3e Hartwig JF. Bergman RG. Andersen RA. J. Am. Chem. Soc. 1991; 113: 3404
    • 3f Campora J. Buchwald SL. Organometallics 1993; 12: 4182
    • 3g Mashima K. Tanaka Y. Nakamura A. Organometallics 1995; 14: 5642
    • 3h Retbøll M. Edwards AJ. Rae AD. Willis AC. Bennett MA. Wenger E. J. Am. Chem. Soc. 2002; 124: 8348
    • 3i Sumida Y. Sumida T. Hashizume D. Hosoya T. Org. Lett. 2016; 18: 5600
  • 4 Peña D. Escudero S. Pérez D. Guitián E. Castedo L. Angew. Chem. Int. Ed. 1998; 37: 2659
  • 5 Peña D. Pérez D. Guitián E. Castedo L. J. Am. Chem. Soc. 1999; 121: 5827
    • 6a Yoshikawa E. Radhakrishnan KV. Yamamoto Y. J. Am. Chem. Soc. 2000; 122: 7280
    • 6b Yoshikawa E. Yamamoto Y. Angew. Chem. Int. Ed. 2000; 39: 173
  • 7 Liu Y.-L. Liang Y. Pi S.-F. Huang X.-C. Li J.-H. J. Org. Chem. 2009; 74: 3199
  • 8 Qiu Z. Xie Z. Angew. Chem. Int. Ed. 2009; 48: 5729
  • 9 Caeiro J. Peña D. Cobas A. Pérez D. Guitián E. Adv. Synth. Catal. 2006; 348: 2466
  • 10 Schuler B. Collazos S. Gross L. Meyer G. Pérez D. Guitián E. Peña D. Angew. Chem. Int. Ed. 2014; 53: 9004
    • 11a Gross L. Mohn F. Moll N. Schuler B. Criado A. Guitián E. Peña D. Gourdon A. Meyer G. Science (Washington, D. C.) 2012; 337: 1326
    • 11b Alonso JM. Díaz-Álvarez A. Criado A. Pérez D. Peña D. Guitián E. Angew. Chem. Int. Ed. 2012; 51: 173
    • 11c Criado A. Peña D. Cobas A. Guitián E. Chem.–Eur. J. 2010; 16: 9736
    • 11d Criado A. Gómez-Escalonilla MJ. Fierro JL. G. Urbina A. Peña D. Guitián E. Langa F. Chem. Commun. 2010; 46: 7028
    • 11e Romero C. Peña D. Pérez D. Guitián E. Termine R. Golemme A. Omenat A. Barberá J. Serrano JL. J. Mater. Chem. 2009; 19: 4725
    • 11f Romero C. Peña D. Pérez D. Guitián E. Chem.–Eur. J. 2006; 12: 5677
  • 12 Sato Y. Tamura T. Mori M. Angew. Chem. Int. Ed. 2004; 43: 2436
  • 13 Kim HS. Gowrisankar S. Kim ES. Kim JN. Tetrahedron Lett. 2008; 49: 6569
  • 14 Hsieh JC. Cheng C.-H. Chem. Commun. 2008; 2992
  • 15 Cant AA. Roberts L. Greaney MF. Chem. Commun. 2010; 46: 8671
  • 16 García-López J.-A. Greaney MF. Org. Lett. 2014; 16: 2338
  • 17 Yoshida H. Ikadai J. Shudo M. Ohshita J. Kunai A. J. Am. Chem. Soc. 2003; 125: 6638
  • 18 Yoshida H. Tanino K. Ohshita J. Kunai A. Angew. Chem. Int. Ed. 2004; 43: 5052
  • 19 Yoshida H. Kawashima S. Takemoto Y. Okada K. Ohshita J. Takaki K. Angew. Chem. Int. Ed. 2012; 51: 235
  • 20 Pareek M. Fallon T. Oestreich M. Org. Lett. 2015; 17: 2082
  • 21 Zeng Y. Hu J. Chem.–Eur. J. 2014; 20: 6866
  • 22 Pawliczek M. Garve LK. B. Werz DB. Org. Lett. 2015; 17: 1716
  • 23 Liu Z. Larock RC. Org. Lett. 2004; 6: 3739
  • 24 Zhang X. Larock RC. Org. Lett. 2005; 7: 3973
  • 25 Worlikar SA. Larock RC. J. Org. Chem. 2009; 74: 9132
  • 26 Huang X. Sha F. Tong J. Adv. Synth. Catal. 2010; 352: 379
  • 27 Lu C. Markina NA. Larock RC. J. Org. Chem. 2012; 77: 11153
  • 28 Lu C. Dubrovskiy AV. Larock RC. J. Org. Chem. 2012; 77: 8648
  • 29 Yuan W. Ma S. Org. Lett. 2014; 16: 193
  • 30 Dong Y. Liu B. Chen P. Liu Q. Wang M. Angew. Chem. Int. Ed. 2014; 53: 3442
  • 31 Liu Z. Zhang X. Larock RC. J. Am. Chem. Soc. 2005; 127: 15716
  • 32 Bhuvaneswari S. Jeganmohan M. Cheng C.-H. Org. Lett. 2006; 8: 5581
  • 33 Liu Z. Larock RC. Angew. Chem. Int. Ed. 2007; 46: 2535
  • 34 Gerfaud T. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2009; 48: 572
  • 35 Peng X. Wang W. Jiang C. Sun D. Xu Z. Tung C.-H. Org. Lett. 2014; 16: 5354
  • 36 Pimparkar S. Jeganmohan M. Chem. Commun. 2014; 50: 12116
  • 37 Feng M. Tang B. Xu H. Jiang X. Org. Lett. 2016; 18: 4352
  • 38 Jeganmohan M. Cheng C.-H. Org. Lett. 2004; 6: 2821
  • 39 Jayanth TT. Jeganmohan M. Cheng C.-H. Org. Lett. 2005; 7: 2921
  • 40 Henderson JL. Edwards AS. Greaney MF. J. Am. Chem. Soc. 2006; 128: 7426
  • 41 Jayanth TT. Cheng C.-H. Angew. Chem. Int. Ed. 2007; 46: 5921
  • 42 Xie C. Liu L. Zhang Y. Xu P. Org. Lett. 2008; 10: 2393
  • 43 Jeganmohan M. Bhuvaneswari S. Cheng C.-H. Angew. Chem. Int. Ed. 2009; 48: 391
  • 44 Garve LK. B. Werz DB. Org. Lett. 2015; 17: 596
  • 45 Yoo W.-J. Nguyen TV. Q. Kobayashi S. Angew. Chem. Int. Ed. 2014; 53: 10213
  • 46 Feng M. Tang B. Wang N. Xu H. Jiang X. Angew. Chem. Int. Ed. 2015; 54: 14960