Synthesis 2017; 49(18): 4229-4246
DOI: 10.1055/s-0036-1589054
special topic
© Georg Thieme Verlag Stuttgart · New York

Lewis Acid Mediated Cyclizations: Diastereoselective Synthesis of Six- to Eight-Membered Substituted Cyclic Ethers

Arun K. Ghosh*
a  Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
b  Department of Medicinal Chemistry, Purdue University, 575 W Stadium Ave, West Lafayette, IN, 47907, USA   Email: akghosh@purdue.edu
,
Anthony J. Tomaine
a  Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
,
Kelsey E. Cantwell
a  Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
› Author Affiliations
The National Institutes of Health.
Further Information

Publication History

Received: 19 April 2017

Accepted after revision: 22 May 2017

Publication Date:
25 July 2017 (online)

Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

Cyclic ethers are widely abundant in natural products. Cyclic ether templates are also utilized in drug design and medicinal chemistry. Although the synthetic processes for this class of compounds have been studied extensively with respect to five- and six-membered rings, medium-sized cyclic ethers are synthetically more challenging due to a variety of factors. Herein, we report our results on the Lewis acid catalyzed synthesis of medium-sized cyclic ethers in a diastereoselective manner.

Supporting Information

 
  • References

  • 1 Martín T. Padrón JI. Martín VS. Synlett 2014; 25: 12
  • 2 Hernández-Torres G. Mateo J. Colobert F. Urbano A. Carreño MC. ChemistrySelect 2016; 1: 4101
  • 3 Rutkowski J. Brzezinski B. BioMed Res. Int. 2013; 2013: 162513
  • 4 Zhou Z.-F. Menna M. Cai Y.-S. Guo Y.-W. Chem. Rev. 2015; 115: 1543
  • 5 Stambasky J. Hocek M. Kocovsky P. Chem. Rev. 2009; 109: 6729
  • 6 Bililign T. Griffith BR. Thorson JS. Nat. Prod. Rep. 2005; 22: 742
  • 7 Murata M. Yasumoto T. Nat. Prod. Rep. 2000; 17: 293
  • 8 Hotta K. Chen X. Paton RS. Minami A. Li H. Swaminathan K. Mathews TI. Watanabe K. Oikawas H. Houk KN. Kim C.-Y. Nature 2012; 483: 355
  • 9 Wang B.-G. Gloer JB. Ji N.-Y. Zhao J.-C. Chem. Rev. 2013; 113: 3632
  • 10 McLaughlin JL. J. Nat. Prod. 2008; 71: 1311
  • 11 Nakata T. Chem. Soc. Rev. 2010; 39: 1955
  • 12 Nakata T. Chem. Rev. 2005; 105: 4314
  • 13 Ghosh AK. Anderson DD. Future Med. Chem. 2011; 3: 1181
  • 14 Ghosh AK. Anderson DD. Weber IT. Mitsuya H. Angew. Chem. Int. Ed. 2012; 51: 1778
  • 15 Fukuzawa A. Masamune T. Tetrahedron Lett. 1981; 22: 4081
  • 16 Cameron AF. Cheung KK. Ferguson G. Monteath Robertson J. Chem. Commun. 1965; 638
  • 17 Ghosh AK. Chapsal BD. Baldridge A. Steffey MP. Walters DE. Koh Y. Amano M. Mitsuya H. J. Med. Chem. 2011; 54: 622
  • 18 Sugimoto I. Kambe T. Okino T. Obitsu T. Ohta N. Nishiyama T. Kinoshita A. Fujimoto T. Egashira H. Yamane S. Shuto S. Tani K. Maruyama T. ACS Med. Chem. Lett. 2017; 8: 107
  • 19 Kleinke AS. Webb D. Jamison TF. Tetrahedron 2012; 68: 6999
  • 20 Rainier JD. In Metathesis in Natural Product Synthesis: Strategies, Substrates, and Catalysts . Cossy J. Arseniyadis S. Meyer C. Wiley-VCH; Weinheim: 2010: 87-127
  • 21 Morris JC. Phillips AJ. Nat. Prod. Rep. 2011; 28: 269
  • 22 Clark JS. Chem. Commun. 2006; 3571
  • 23 Ghosh AK. Kass J. Nicponski DR. Keyes C. Synthesis 2012; 44: 3579
  • 24 Eschenbrenner-Lux V. Kumar K. Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 11146
  • 25 Pastor IM. Yus M. Curr. Org. Chem. 2007; 11: 925
  • 26 Smith AB. III. Fox RJ. Razler TM. Acc. Chem. Res. 2008; 41: 675
  • 27 Clavier H. Pellissier H. Adv. Synth. Catal. 2012; 354: 3347
  • 28 Illuminati G. Mandolini L. Acc. Chem. Res. 1981; 14: 95
  • 29 Katsukiyo M. Horiike M. Inoue G. Ichikawa J. Hosomi A. Chem. Lett. 2008; 37: 270
  • 30 Loh T.-P. Hu Q.-Y. Tan K.-T. Cheng H.-S. Org. Lett. 2001; 3: 2669
  • 31 Ghosh AK. Nicponski DR. Org. Lett. 2011; 13: 4328
  • 32 Zimmerman HE. Traxler MD. J. Am. Chem. Soc. 1957; 79: 1920
  • 33 Ghosh AK. Keys C. Veitschegger AM. Tetrahedron Lett. 2014; 55: 4251
  • 34 Kobayashi S. Hachiya I. Araki M. Ishitani H. Tetrahedron Lett. 1993; 34: 3755
  • 35 Banerjee B. ARKIVOC 2017; (i): 1
  • 36 Yadav JS. Reddy BV. S. Sekhar KC. Geetha V. Tetrahedron Lett. 2001; 42: 4405
  • 37 Alaniz J. Palmer L. Angew. Chem. Int. Ed. 2011; 50: 7167
  • 38 Veits GK. Alaniz JR. D. Tetrahedron 2012; 68: 2015
  • 39 Bratz M. Bullock WH. Overman LE. Takemoto T. J. Am. Chem. Soc. 1995; 117: 5958
  • 40 Ghosh AK. Tomaine AJ. Cantwell KE. Org. Lett. 2016; 18: 396
  • 41 Ullapu PR. Kim YS. Lee JK. Pae AN. Kim Y. Min S.-J. Cho YS. Chem. Asian J. 2011; 6: 2092
  • 42 Complete crystallographic data for 48, in CIF format, have been deposited with The Cambridge Crystallographic Data Centre. CCDC 1543753 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.