Synthesis 2017; 49(16): 3582-3589
DOI: 10.1055/s-0036-1589052
special topic
© Georg Thieme Verlag Stuttgart · New York

On the Regioselectivity of the Nickel-Catalyzed Insertion of Alkynes into the Carbon–Carbon Bond of Oxetan-3-one

Manuel Barday
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK   Email: aissa@liverpool.ac.uk
,
Christopher Janot
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK   Email: aissa@liverpool.ac.uk
,
Daniel Clare
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK   Email: aissa@liverpool.ac.uk
,
Caitlin Carr-Knox
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK   Email: aissa@liverpool.ac.uk
,
Bradley Higginson
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK   Email: aissa@liverpool.ac.uk
,
Kelvin Y. T. Ho
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK   Email: aissa@liverpool.ac.uk
,
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK   Email: aissa@liverpool.ac.uk
› Author Affiliations
We thank the EPSRC (EP/P505615/1 studentship to K.Y.T.H. and EP/N509267/1 studentship to D.C.), the University of Liverpool (studentships to M.B. and C.J.), and AstraZeneca for financial support.
Further Information

Publication History

Received: 31 March 2017

Accepted after revision: 17.05.2017

Publication Date:
27 June 2017 (eFirst)

Published as part of the Special Topic Advanced Strategies in Synthesis with Nickel

Abstract

The study of the regioselectivity of insertion of unsymmetrical alkynes into the carbon–carbon bond of oxetan-3-one in the presence of a nickel catalyst has revealed a strong directing effect of a 2-thienyl substituent. This effect is larger than those of 2-vinylbenzene, trimethylsilyl, aryl, or 3-thienyl groups.

Supporting Information

 
  • References


    • For selected recent reviews, see:
    • 1a Ghosh AK. Brindisi M. RSC Adv. 2016; 6: 111564
    • 1b Varela JA. Saa C. Synthesis 2016; 48: 3470
    • 1c Jacques R. Pal R. Parker NA. Sear CE. Smith PW. Ribaucourt A. Hodgson DM. Org. Biomol. Chem. 2016; 14: 5875
    • 1d Naysmith BJ. Hume PA. Sperry J. Brimble MA. Nat. Prod. Rep. 2017; 34: 25
  • 2 Clayton JP. O’Hanlon PJ. Rogers NH. King TJ. J. Chem. Soc., Perkin Trans. 1 1982; 2827
  • 3 Ali A. Khajuria A. Sidiq T. Kumar A. Thakur NL. Naik D. Vishwakarma RA. Immunol. Lett. 2013; 150: 79
  • 4 Takayuki S. German Patent DE 4207301 C1, 1993
  • 5 Gehrt A. Erkel G. Anke T. Sterner O. J. Antibiot. 1998; 51: 455
  • 6 Ho KY. T. Aïssa C. Chem. Eur. J. 2012; 18. 3486

    • Azetidin-3-ones also undergo the same reaction smoothly. See ref. 6 and:
    • 7a Kumar P. Louie J. Org. Lett. 2012; 14: 2026
    • 7b Ishida N. Yuhki T. Murakami M. Org. Lett. 2012; 14: 3898

      Recent reviews on nickel-catalyzed reactions:
    • 8a Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005
    • 8b Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 8c Tasker SZ. Stanley EA. Jamison TF. Nature 2014; 509: 299
    • 8d Ananikov VP. ACS Catal. 2015; 5: 1964
    • 10a Kumar P. Zhang K. Louie J. Angew. Chem. Int. Ed. 2012; 51: 8602
    • 10b Thakur A. Facer ME. Louie J. Angew. Chem. Int. Ed. 2013; 52: 12161
    • 10c Ishida N. Nakanishi Y. Murakami M. Angew. Chem. Int. Ed. 2013; 52: 11875
    • 10d An J.-H. Yun H. Shin S. Shin S. Adv. Synth. Catal. 2014; 356: 3749
    • 10e Guo R. Zheng X. Zhang D. Zhang G. Chem. Sci. 2017; 8: 3002
    • 11a Bull JA. Croft RA. Davis OA. Doran R. Morgan KF. Chem. Rev. 2016; 116: 12150
    • 11b Dejaegher Y. Kuz’menok NM. Zvonok AM. De Kimpe N. Chem. Rev. 2002; 102: 29

      For selected recent examples, see:
    • 12a Burkhard JA. Tchichanov BH. Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 5379
    • 12b Guo B. Schwarzwalder G. Njardarson JT. Angew. Chem. Int. Ed. 2012; 51: 5675
    • 12c Orr D. Tolfrey A. Percy JM. Frieman J. Harrison ZA. Campbell-Crawford M. Patel VK. Chem. Eur. J. 2013; 19: 9655
    • 12d Pawar SK. Vasu D. Liu R.-S. Adv. Synth. Catal. 2014; 356: 2411
    • 13a Wuitschick G. Rogers-Evans M. Müller K. Fischer H. Wagner B. Schuler F. Polonchuk L. Carreira EM. Angew. Chem. Int. Ed. 2006; 45: 7736
    • 13b Wuitschick G. Rogers-Evans M. Buckl A. Bernasconi M. Märki M. Godel T. Fischer H. Wagner B. Parrilla I. Schuler F. Schneider J. Alker A. Schweizer WB. Müller K. Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 4512
    • 13c Wuitschick G. Carreira EM. Wagner B. Fischer H. Parrilla I. Schuler F. Rogers-Evans M. Müller K. J. Med. Chem. 2010; 53: 3227
  • 14 Thakur A. Evangelista JL. Kumar P. Louie J. J. Org. Chem. 2015; 80: 9951
  • 15 Barday M. Ho KY. T. Halsall CT. Aïssa C. Org. Lett. 2016; 18: 1759
  • 16 7a (R1 = SiMe3, R2 = 4-CF3C6H4); 7b (R1 = SiMe2Ph, R2 = Ph); 7c (R1 = SiMe3, R2 = Ph); 7d (R1 = SiMe3, R2 = 3-thienyl); 7e (R1 = SiMe3, R2 = (CH2)3Ph); 7f (R1 = n-octyl, R2 = Ph); 7g (R1 = n-Bu, R2 = 4-AcC6H4); 7h (R1 = n-Bu, R2 = 4-MeOC6H4); 7i (R1 = i-Bu, R2 = 4-MeOC6H4); 7j (R1 = n-octyl, R2 = 2-vinylbenzene); 7k (R1 = n-Bu, R2 = 2-thienyl); 7m (R1 = n-Bu, R2 = 3-thienyl); 7n (R1 = n-Bu, R2 = 2-furyl).
  • 17 Zinc powder AnalaR® from BDH was used in these experiments. The specifications of the powder were not provided by the supplier. However, scanning electron microscopy showed flakes and scales of 1–2 μm in length on the surface of the irregularly shaped zinc particles of various sizes. Images of the SEM analysis are included in the Supporting Information.
  • 18 Murakami M. Ashida S. Matsuda T. J. Am. Chem. Soc. 2005; 127: 6932
  • 20 Van den Hoven BG. Alper H. J. Org. Chem. 1999; 64: 9640
  • 21 McCarren PR. Liu P. Cheong PH.-Y. Jamison TF. Houk KN. J. Am. Chem. Soc. 2009; 131: 6654
    • 22a Liu P. McCarren P. Cheong PH.-Y. Jamison TF. Houk KN. J. Am. Chem. Soc. 2010; 132: 2050
    • 22b Mahandru GM. Liu G. Montgomery J. J. Am. Chem. Soc. 2004; 126: 3698
    • 22c Miller KM. Luanphaisarnnont T. Molinaro C. Jamison TF. J. Am. Chem. Soc. 2004; 126: 4130
    • 22d Miller KM. Jamison TF. Org. Lett. 2005; 7: 3077
    • 23a Ogoshi S. Ueta M. Arai T. Kurosawa H. J. Am. Chem. Soc. 2005; 127: 12810
    • 23b Ogoshi S. Arai T. Ohashi M. Kurusawa H. Chem. Commun. 2008; 1347
  • 24 Li Y. Lin Z. Organometallics 2013; 32: 3003
  • 25 Transition state IV is drawn in accordance with the transition state found for the nickel-catalyzed insertion of alkynes into N-Boc-azetidin-3-one 2 in reference 23.
    • 26a Bartik T. Happ B. Iglewsky M. Bandmann H. Boese R. Heimbach P. Hoffmann T. Wenschuh E. Organometallics 1992; 11: 1235
    • 26b Rosenthal U. Nauck C. Arndt P. Pulst S. Baumann W. Burlakov VV. Görls H. J. Organomet. Chem. 1994; 484: 81
  • 27 Ye L. He W. Zhang L. J. Am. Chem. Soc. 2010; 132: 8550
  • 28 Murakami M. Ashida S. Matsuda T. J. Am. Chem. Soc. 2006;  128: 2166
  • 29 Juliá-Hernández F. Ziadi A. Nishimura A. Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
  • 30 Torborg C. Zapf A. Beller M. ChemSusChem 2008; 1: 91
  • 31 Fleming I. Mwaniki JM. J. Chem. Soc., Perkin Trans. 1 1998; 1237
  • 32 Nakamura M. Ito S. Matsuo K. Nakamura E. Synlett 2005; 1794
  • 33 Li P. Wang L. Li H. Tetrahedron 2005; 61: 8633
  • 34 Melzig L. Stemper J. Knochel P. Synthesis 2010; 2085
  • 35 Roesch KR. Larock RC. J. Org. Chem. 2001; 66: 412
  • 36 Kel’in AV. Sromek AW. Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 2074