Synthesis 2017; 49(18): 4213-4220
DOI: 10.1055/s-0036-1589044
special topic
© Georg Thieme Verlag Stuttgart · New York

Catalytic Radical Intramolecular Aminoperfluoroalkylation and Aminodifluoromethylation of Unactivated Alkenes with Fluoro­alkylsulfonyl Chlorides

Xue-Fei Li
a  School of Chemistry and Chemical Engineering, Harbin Institute Of Technology, Harbin, 150080, P. R. of China
b  Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. of China   Email: liuxy3@sustc.edu.cn
,
Jin-Shun Lin
b  Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. of China   Email: liuxy3@sustc.edu.cn
,
Xin-Yuan Liu*
b  Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. of China   Email: liuxy3@sustc.edu.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (Nos. 21572096 and 21602098), Shenzhen overseas high-level talents innovation plan of technical innovation project (KQCX20150331101823702), Shenzhen special funds for the development of biomedicine, Internet, new energy, and new material industries (JCYJ20150430160022517), and the National Key Basic Research Program of China (973 Program) (2013CB834802) is greatly appreciated.
Further Information

Publication History

Received: 19 April 2017

Accepted after revision: 11 May 2017

Publication Date:
29 June 2017 (eFirst)

Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

The Cu(I)/phosphoric acid (PA) dual-catalyzed radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes with commercially available fluoroalkylsulfonyl chlorides as the radical source is described. Functionalized α-tertiary pyrrolidines bearing four types of fluoroalkyl groups are obtained with moderate to excellent yields. The introduction of a Cu(I)/phosphoric acid dual catalytic system and the use of silver carbonate as a key additive to inhibit the side hydroamination reaction caused by the in situ generated HCl are crucial for the transformation.

Supporting Information

 
  • References


    • For selected reviews on fluoroalkylation of organic compounds, see:
    • 1a Furuya T. Kamlet AS. Ritter T. Nature 2011; 473: 470
    • 1b Nie J. Guo H.-C. Cahard D. Ma J.-A. Chem. Rev. 2011; 111: 455
    • 1c Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
    • 1d Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 1e Wu X.-F. Neumann H. Beller M. Chem. Asian J. 2012; 7: 1744
    • 1f Ye Y. Sanford MS. Synlett 2012; 23: 2005
    • 1g Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 1h Liu H. Gu Z. Jiang X. Adv. Synth. Catal. 2013; 355: 617
    • 1i Barata-Vallejo S. Lantano B. Postigo A. Chem. Eur. J. 2014; 20: 16806
    • 1j Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
    • 1k Charpentier J. Fruh N. Togni A. Chem. Rev. 2015; 115: 650
    • 1l Zeng Y. Ni C. Hu J. Chem. Eur. J. 2016; 22: 3210

      For selected reviews on the bioactivity of fluoroalkyl organic compounds, see:
    • 2a Muller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 2b Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 2c Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2d Wang J. Sanchez-Rosello M. Acena JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 2e Gillis EP. Eastman KJ. Hill MD. Donnelly DJ. Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 3a Erickson JA. Mcloughlin JI. J. Org. Chem. 1995; 60: 1626
    • 3b Narjes F. Koehler KF. Koch U. Gerlach B. Colarusso S. Steinkuhler C. Brunetti M. Altamura S. De Francesco R. Matassa VG. Bioorg. Med. Chem. Lett. 2002; 12: 701
    • 3c Xu Y. Qian L. Pontsler AV. McIntyre TM. Prestwich GD. Tetrahedron 2004; 60: 43
    • 3d Li Y. Hu J. Angew. Chem. Int. Ed. 2005; 44: 5882
    • 3e Prakash GK. Weber C. Chacko S. Olah GA. Org. Lett. 2007; 9: 1863
    • 3f Chowdhury MA. Abdellatif KR. Dong Y. Das D. Suresh MR. Knaus EE. J. Med. Chem. 2009; 52: 1525
    • 3g Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 3h List B. Synlett 2001; 1675
    • 3i Harb HY. Procter DJ. Synlett 2012; 23: 6
    • 3j Müller TJ. J. Synthesis 2012; 44: 159
    • 3k Kocienski P. Synfacts 2012; 8: 5
  • 4 Kim E. Choi S. Kim H. Cho EJ. Chem. Eur. J. 2013; 19: 6209
  • 5 Wei Q. Chen J.-R. Hu X.-Q. Yang X.-C. Lu B. Xiao WJ. Org. Lett. 2015; 17: 4464
  • 6 Yasu Y. Koike T. Akita M. Org. Lett. 2013; 15: 2136
  • 7 Dagousset G. Carboni A. Magnier E. Masson G. Org. Lett. 2014; 16: 4340
    • 8a Egami H. Kawamura S. Miyazaki A. Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 7841
    • 8b Kawamura S. Egami H. Sodeoka M. J. Am. Chem. Soc. 2015; 137: 4865
  • 9 Shen K. Wang Q. Org. Chem. Front. 2016; 3: 222
  • 10 Lin J.-S. Xiong Y.-P. Ma C.-L. Zhao L.-J. Tan B. Liu X.-Y. Chem. Eur. J. 2014; 20: 1332
    • 11a Wang F. Qi X. Liang Z. Chen P. Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
    • 11b Wang F. Zhu N. Chen P. Ye J. Liu G. Angew. Chem. Int. Ed. 2015; 54: 9356

      For selected examples, see:
    • 12a Kamigata N. Fukushima T. Yoshida M. J. Chem. Soc., Chem. Commun. 1989; 1559
    • 12b Kamigata N. Fukushima T. Terakawa Y. Yoshida M. Sawada H. J. Chem. Soc., Perkin Trans. 1 1991; 627
    • 12c Tang X.-J. Thomoson CS. Dolbier WR. Jr. Org. Lett. 2014; 16: 4594
    • 12d Oh SH. Malpani YR. Ha N. Jung Y.-S. Han S.-B. Org. Lett. 2014; 16: 1310
    • 12e Zhang Z. Tang X. Thomoson CS. Dolbier WR. Jr. Org. Lett. 2015; 17: 3528
    • 12f Zhang Z. Tang X. Dolbier WR. Jr. Org. Lett. 2015; 17: 4401
    • 12g Tang X.-J. Zhang Z. Dolbier WR. Jr. Chem. Eur. J. 2015; 21: 18961
    • 12h Pagire SK. Paria S. Reiser O. Org. Lett. 2016; 18: 2106
    • 12i Tang X.-J. Dolbier WR. Jr. Angew. Chem. Int. Ed. 2015; 54: 4246
    • 12j Thomoson CS. Tang X.-J. Dolbier WR. Jr. J. Org. Chem. 2015; 80: 1264
    • 12k Zhang Z. Tang X.-J. Dolbier WR. Jr. Org. Lett. 2016; 18: 1048
  • 13 Lin J.-S. Dong X.-Y. Li T.-T. Jiang N.-C. Tan B. Liu X.-Y. J. Am. Chem. Soc. 2016; 138: 9357
  • 14 Lin J.-S. Yu P. Huang L. Zhang P. Tan B. Liu X.-Y. Angew. Chem. Int. Ed. 2015; 54: 7847
  • 15 During the preparation of this manuscript, we achieved the catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes with commercially available fluoroalkylsulfonyl chlorides using a dual catalytic system comprising Cu(I) and a chiral phosphoric acid (CPA), see: Lin J.-S. Wang F.-L. Dong X.-Y. He W-W. Yuan Y. Chen S. Liu X.-Y. Nat. Commun. 2017; 8: 14841
    • 16a Zhu R. Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 12655
    • 16b Zhu R. Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
    • 16c For a computational study, see: Ling L. Liu K. Li X. Li Y. ACS Catal. 2015; 5: 2458

      For a representative review on high-valent copper in catalysis, see:
    • 17a Hickman AJ. Sanford MS. Nature 2012; 484: 177

    • For selected leading references, see:
    • 17b Creutz SE. Lotito KJ. Fu GC. Peters JC. Science 2012; 338: 647
    • 17c Kainz QM. Matier CD. Bartoszewicz A. Zultanski SL. Peters JC. Fu GC. Science 2016; 351: 681
    • 17d Ye Y. Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
    • 17e Tran BL. Li B. Driess M. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 2555
    • 17f Wang F. Wang D. Mu X. Chen P. Liu G. J. Am. Chem. Soc. 2014; 136: 10202
    • 17g Zhang H. Yao B. Zhao L. Wang D.-X. Xu B.-Q. Wang M.-X. J. Am. Chem. Soc. 2014; 136: 6326
    • 17h Holt D. Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 7857
    • 17i Cahard E. Male HP. Tissot M. Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 7986
    • 17j Walkinshaw AJ. Xu W. Suero MG. Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 12532
    • 17k Wang Z.-L. Zhao L. Wang M.-X. Chem. Commun. 2012; 48: 9418