Synthesis 2017; 49(14): 3035-3068
DOI: 10.1055/s-0036-1589021
short review
© Georg Thieme Verlag Stuttgart · New York

Ring Opening of Donor–Acceptor Cyclopropanes with N-Nucleo­philes

Ekaterina M. Budynina*
Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russian Federation   eMail: ekatbud@kinet.chem.msu.ru
,
Konstantin L. Ivanov
Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russian Federation   eMail: ekatbud@kinet.chem.msu.ru
,
Ivan D. Sorokin
Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russian Federation   eMail: ekatbud@kinet.chem.msu.ru
,
Mikhail Ya. Melnikov
Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russian Federation   eMail: ekatbud@kinet.chem.msu.ru
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 06. Februar 2017

Accepted after revision: 07. April 2017

Publikationsdatum:
18. Mai 2017 (online)


Abstract

Ring opening of donor–acceptor cyclopropanes with various N-nucleophiles provides a simple approach to 1,3-functionalized compounds that are useful building blocks in organic synthesis, especially in assembling various N-heterocycles, including natural products. In this review, ring-opening reactions of donor–acceptor cyclopropanes with amines, amides, hydrazines, N-heterocycles, nitriles, and the azide ion are summarized.

1 Introduction

2 Ring Opening with Amines

3 Ring Opening with Amines Accompanied by Secondary Processes Involving the N-Center

3.1 Reactions of Cyclopropane-1,1-diesters with Primary and Secondary Amines

3.1.1 Synthesis of γ-Lactams

3.1.2 Synthesis of Pyrroloisoxazolidines and -pyrazolidines

3.1.3 Synthesis of Piperidines

3.1.4 Synthesis of Azetidine and Quinoline Derivatives

3.2 Reactions of Ketocyclopropanes with Primary Amines: Synthesis of Pyrrole Derivatives

3.3 Reactions of Сyclopropane-1,1-dicarbonitriles with Primary Amines: Synthesis of Pyrrole Derivatives

4 Ring Opening with Tertiary Aliphatic Amines

5 Ring Opening with Amides

6 Ring Opening with Hydrazines

7 Ring Opening with N-Heteroaromatic Compounds

7.1 Ring Opening with Pyridines

7.2 Ring Opening with Indoles

7.3 Ring Opening with Di- and Triazoles

7.4 Ring Opening with Pyrimidines

8 Ring Opening with Nitriles (Ritter Reaction)

9 Ring Opening with the Azide Ion

10 Summary

 
  • References

  • 1 Reissig H.-U. Hirsch E. Angew. Chem. Int. Ed. 1980; 19: 813
  • 2 Seebach D. Angew. Chem. Int. Ed. 1979; 18: 239
  • 3 Stevens RV. Acc. Chem. Res. 1977; 10: 193
  • 4 Danishefsky S. Acc. Chem. Res. 1979; 12: 66
  • 5 Wenkert E. Acc. Chem. Res. 1980; 13: 27
  • 6 Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
  • 7 Wong HN. C. Hon MY. Tse CW. Yip YC. Tanko J. Hudlicky T. Chem. Rev. 1989; 89: 165
  • 8 Kulinkovich OG. Russ. Chem. Rev. 1993; 62: 839
  • 9 Reissig H. Zimmer R. Chem. Rev. 2003; 103: 1151
  • 10 Yu M. Pagenkopf BL. Tetrahedron 2005; 61: 321
  • 11 Agrawal D. Yadav VK. Chem. Commun. 2008; 6471
  • 12 Carson CA. Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
  • 13 De Simone F. Waser J. Synthesis 2009; 3353
  • 14 Campbell MJ. Johnson JS. Parsons AT. Pohlhaus PD. Sanders SD. J. Org. Chem. 2010; 75: 6317
  • 15 Lebold TP. Kerr MA. Pure Appl. Chem. 2010; 82: 1797
  • 16 Mel’nikov MYa. Budynina EM. Ivanova OA. Trushkov IV. Mendeleev Commun. 2011; 21: 293
  • 17 De Simone F. Waser J. Synlett 2011; 589
  • 18 Tang P. Qin Y. Synthesis 2012; 44: 2969
  • 19 Wang Z. Synlett 2012; 23: 2311
  • 20 de Nanteuil F. De Simone F. Frei R. Benfatti F. Serrano E. Waser J. Chem. Commun. 2014; 50: 10912
  • 21 Cavitt MA. Phun LH. France S. Chem. Soc. Rev. 2014; 43: 804
  • 22 Schneider TF. Kaschel J. Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
  • 23 Grover HK. Emmett MR. Kerr MA. Org. Biomol. Chem. 2015; 13: 655
  • 24 Novikov RA. Tomilov YV. Mendeleev Commun. 2015; 25: 1
  • 25 Kulinkovich OG. Cyclopropanes in Organic Synthesis . John Wiley; Hoboken: 2015: 432
  • 26 Chemistry of Donor–Acceptor Cyclopropanes and Cyclobutanes, Special Issue: Isr. J. Chem. 2016; 56: 365
  • 27 Rassadin VA. Six Y. Tetrahedron 2016; 72: 4701
  • 28 Gharpure SJ. Nanda LN. Tetrahedron Lett. 2017; 58: 711
  • 29 Bone WA. Perkin WH. J. Chem. Soc., Trans. 1895; 67: 108
  • 30 Stewart JM. Westberg HH. J. Org. Chem. 1965; 30: 1951
  • 31 Stewart JM. Pagenkopf GK. J. Org. Chem. 1969; 34: 7
  • 32 For recent review on formal [3+2]-cycloaddition of donor–acceptor cyclopropanes to imines yielding pyrrolidines, see: Kumar I. RSC Adv. 2014; 4: 16397
  • 33 Buev EM. Moshkin VS. Sosnovskikh VY. Tetrahedron Lett. 2016; 57: 3731
  • 34 Curiel Tejeda JE. Irwin LC. Kerr MA. Org. Lett. 2016; 18: 4738
  • 35 Xiao J.-A. Li J. Xia P.-J. Zhou Z.-F. Deng Z.-X. Xiang H.-Y. Chen X.-Q. Yang H. J. Org. Chem. 2016; 81: 11185
  • 36 Korotkov VS. Larionov OV. Hofmeister A. Magull J. de Meijere A. J. Org. Chem. 2007; 72: 7504
  • 37 Mei L.-Y. Tang X.-Y. Shi M. Chem. Eur. J. 2014; 20: 13136
  • 38 Cao B. Mei L.-Y. Li X.-G. Shi M. RSC Adv. 2015; 5: 92545
  • 39 Yang C. Liu W. He Z. He Z. Org. Lett. 2016; 18: 4936
  • 40 Morra NA. Morales CL. Bajtos B. Wang X. Jang H. Wang J. Yu M. Pagenkopf BL. Adv. Synth. Catal. 2006; 348: 2385
  • 41 Liu J. Zhou L. Ye W. Wang C. Chem. Commun. 2014; 50: 9068
  • 42 Wang D. Xie M. Guo H. Qu G. Zhang M. You S. Angew. Chem. Int. Ed. 2016; 55: 14111
  • 43 Goldberg AF. G. O’Connor NR. Craig RA. Stoltz BM. Org. Lett. 2012; 14: 5314
  • 44 Tsunoi S. Maruoka Y. Suzuki I. Shibata I. Org. Lett. 2015; 17: 4010
  • 45 Alajarin M. Egea A. Orenes R.-A. Vidal A. Org. Biomol. Chem. 2016; 14: 10275
  • 46 Yu M. Pagenkopf BL. Org. Lett. 2003; 5: 5099
  • 47 Yu M. Pagenkopf BL. J. Am. Chem. Soc. 2003; 125: 8122
  • 48 Yu M. Pantos GD. Sessler JL. Pagenkopf BL. Org. Lett. 2004; 6: 1057
  • 49 Morales CL. Pagenkopf BL. Org. Lett. 2008; 10: 157
  • 50 Moustafa MM. A. R. Pagenkopf BL. Org. Lett. 2010; 12: 4732
  • 51 Sathishkannan G. Srinivasan K. Org. Lett. 2011; 13: 6002
  • 52 Chagarovskiy AO. Ivanov KL. Budynina EM. Ivanova OA. Trushkov IV. Chem. Heterocycl. Compd. 2012; 48: 825
  • 53 Cui B. Ren J. Wang Z. J. Org. Chem. 2014; 79: 790
  • 54 Perreault C. Goudreau SR. Zimmer LE. Charette AB. Org. Lett. 2008; 10: 689
  • 55 Zhou Y.-Y. Li J. Ling L. Liao S.-H. Sun X.-L. Li Y.-X. Wang L.-J. Tang Y. Angew. Chem. Int. Ed. 2013; 52: 1452
  • 56 Zhang H. Luo Y. Wang H. Chen W. Xu P. Org. Lett. 2014; 16: 4896
  • 57 Garve LK. B. Petzold M. Jones PG. Werz DB. Org. Lett. 2016; 18: 564
  • 58 Cloke JB. J. Am. Chem. Soc. 1929; 51: 1174
  • 59 Soldevilla A. Sampedro D. Org. Prep. Proced. Int. 2007; 39: 561
  • 60 Vshyvenko S. Reed JW. Hudlicky T. Piers E. In Comprehensive Organic Synthesis II . Elsevier; Amsterdam: 2014: 999
  • 61 Danishefsky S. Rovnyak G. J. Org. Chem. 1975; 40: 114
  • 62 Kurihara T. Tani T. Nasu K. Inoue M. Ishida T. Chem. Pharm. Bull. 1981; 29: 3214
  • 63 Kurihara T. Tani T. Nasu K. Chem. Pharm. Bull. 1981; 29: 1548
  • 64 Kurihara T. Nasu K. Tani T. J. Heterocycl. Chem. 1982; 19: 519
  • 65 Kurihara T. Kawasaki E. Morita T. Nasu K. J. Heterocycl. Chem. 1985; 22: 785
  • 66 Sato M. Uchimaru F. Chem. Pharm. Bull. 1981; 29: 3134
  • 67 Seebach D. Haner R. Vettiger T. Helv. Chim. Acta 1987; 70: 1507
  • 68 Vettiger T. Seebach D. Liebigs Ann. Chem. 1990; 195
  • 69 O’Bannon PE. Dailey WP. Tetrahedron 1990; 46: 7341
  • 70 Cook AG. Meyer WC. Ungrodt KE. Mueller RH. J. Org. Chem. 1966; 31: 14
  • 71 Cook AG. Wesner LR. Folk SL. J. Org. Chem. 1997; 62: 7205
  • 72 Danishefsky S. Singh RK. J. Am. Chem. Soc. 1975; 97: 3239
  • 73 Budynina EM. Ivanova OA. Averina EB. Kuznetsova TS. Zefirov NS. Tetrahedron Lett. 2006; 47: 647
  • 74 Schobert R. Gordon GJ. Bieser A. Milius W. Eur. J. Org. Chem. 2003; 3637
  • 75 Yates P. Helferty PH. Mahler P. Can. J. Chem. 1983; 61: 78
  • 76 Blanchard LA. Schneider JA. J. Org. Chem. 1986; 51: 1372
  • 77 Magolan J. Kerr MA. Org. Lett. 2006; 8: 4561
  • 78 Tejeda JE. C. Landschoot BK. Kerr MA. Org. Lett. 2016; 18: 2142
  • 79 Tomilov YV. Novikov RA. Nefedov OM. Tetrahedron 2010; 66: 9151
  • 80 Lifchits O. Charette AB. Org. Lett. 2008; 10: 2809
  • 81 Lindsay VN. G. Nicolas C. Charette AB. J. Am. Chem. Soc. 2011; 133: 8972
  • 82 So SS. Auvil TJ. Garza VJ. Mattson AE. Org. Lett. 2012; 14: 444
  • 83 Nickerson DM. Angeles VV. Auvil TJ. So SS. Mattson AE. Chem. Commun. 2013; 49: 4289
  • 84 Zhou Y.-Y. Wang L.-J. Li J. Sun X.-L. Tang Y. J. Am. Chem. Soc. 2012; 134: 9066
  • 85 Kang Q. Wang L. Zheng Z. Li J. Tang Y. Chin. J. Chem. 2014; 32: 669
  • 86 Liao S. Sun X.-L. Tang Y. Acc. Chem. Res. 2014; 47: 2260
  • 87 Zefirov NS. Kozhushkov SI. Kuznetsova TS. Ershov BA. Selivanov SI. Tetrahedron 1986; 42: 709
  • 88 Kokoreva OV. Averina EB. Ivanova OA. Kozhushkov SI. Kuznetsova TS. Chem. Heterocycl. Compd. 2001; 37: 834
  • 89 Liang F. Cheng X. Liu J. Liu Q. Chem. Commun. 2009; 3636
  • 90 Izquierdo ML. Arenal I. Bernabé M. Fernández Alvarez E. Tetrahedron 1985; 41: 215
  • 91 Chen Y. Ding W. Cao W. Lu C. Synth. Commun. 2001; 31: 3107
  • 92 Chen Y. Cao W. Yuan M. Wang H. Ding W. Shao M. Xu X. Synth. Commun. 2008; 38: 3346
  • 93 Schobert R. Bieser A. Mullen G. Gordon G. Tetrahedron Lett. 2005; 46: 5459
  • 94 Snider BB. Ahn Y. Foxman BM. Tetrahedron Lett. 1999; 40: 3339
  • 95 Snider BB. Ahn Y. O’Hare SM. Org. Lett. 2001; 3: 4217
  • 96 Katamreddy SR. Carpenter AJ. Ammala CE. Boros EE. Brashear RL. Briscoe CP. Bullard SR. Caldwell RD. Conlee CR. Croom DK. Hart SM. Heyer DO. Johnson PR. Kashatus JA. Minick DJ. Peckham GE. Ross SA. Roller SG. Samano VA. Sauls HR. Tadepalli SM. Thompson JB. Xu Y. Way JM. J. Med. Chem. 2012; 55: 10972
  • 97 Danishefsky S. Dynak J. J. Org. Chem. 1974; 39: 1979
  • 98 Danishefsky S. McKee R. Singh RK. J. Am. Chem. Soc. 1977; 99: 4783
  • 99 Danishefsky S. Regan J. Doehner R. J. Org. Chem. 1981; 46: 5255
  • 100 Jackson SK. Karadeolian A. Driega AB. Kerr MA. J. Am. Chem. Soc. 2008; 130: 4196
  • 101 Lebold TP. Kerr MA. Org. Lett. 2009; 11: 4354
  • 102 Leduc AB. Kerr MA. Angew. Chem. Int. Ed. 2008; 47: 7945
  • 103 Lebold TP. Leduc AB. Kerr MA. Org. Lett. 2009; 11: 3770
  • 104 Han J.-Q. Zhang H.-H. Xu P.-F. Luo Y.-C. Org. Lett. 2016; 18: 5212
  • 105 Celerier JP. Haddad M. Jacoby D. Lhommet G. Tetrahedron Lett. 1987; 28: 6597
  • 106 David O. Blot J. Bellec C. Fargeau-Bellassoued M.-C. Haviari G. Célérier J.-P. Lhommet G. Gramain J.-C. Gardette D. J. Org. Chem. 1999; 64: 3122
  • 107 Jacoby D. Celerier JP. Haviari G. Petit H. Lhommet G. Synthesis 1992; 884
  • 108 Wurz RP. Charette AB. Org. Lett. 2005; 7: 2313
  • 109 Wang Y. Han J. Chen J. Cao W. Chem. Commun. 2016; 52: 6817
  • 110 Nambu H. Fukumoto M. Hirota W. Yakura T. Org. Lett. 2014; 16: 4012
  • 111 Nambu H. Fukumoto M. Hirota W. Ono N. Yakura T. Tetrahedron Lett. 2015; 56: 4312
  • 112 Zhang Z. Gao X. Li Z. Zhang G. Ma N. Liu Q. Liu T. Org. Chem. Front. 2017; 4: 404
  • 113 Martin MC. Patil DV. France S. J. Org. Chem. 2014; 79: 3030
  • 114 Xia Y. Liu X. Zheng H. Lin L. Feng X. Angew. Chem. Int. Ed. 2015; 54: 227
  • 115 Xia Y. Lin L. Chang F. Liao Y. Liu X. Feng X. Angew. Chem. Int. Ed. 2016; 55: 12228
  • 116 Zhang Z. Zhang F. Wang H. Wu H. Duan X. Liu Q. Liu T. Zhang G. Adv. Synth. Catal. 2015; 357: 2681
  • 117 Zhang Z. Zhang W. Li J. Liu Q. Liu T. Zhang G. J. Org. Chem. 2014; 79: 11226
  • 118 Kaschel J. Schneider TF. Kratzert D. Stalke D. Werz DB. Org. Biomol. Chem. 2013; 11: 3494
  • 119 Kaschel J. Schneider TF. Kratzert D. Stalke D. Werz DB. Angew. Chem. Int. Ed. 2012; 51: 11153
  • 120 Wang P. Song S. Miao Z. Yang G. Zhang A. Org. Lett. 2013; 15: 3852
  • 121 Shen X. Xia J. Liang P. Ma X. Jiao W. Shao H. Org. Biomol. Chem. 2015; 13: 10865
  • 122 Afanasyev OI. Tsygankov AA. Usanov DL. Chusov D. Org. Lett. 2016; 18: 5968
  • 123 Maruoka H. Okabe F. Yamagata K. J. Heterocycl. Chem. 2007; 44: 201
  • 124 Fu Q. Yan C. Tetrahedron Lett. 2011; 52: 4497
  • 125 Han Y. Fu Q. Tang W. Yan C. Chin. J. Chem. 2012; 30: 1867
  • 126 Du D. Wang Z. Tetrahedron Lett. 2008; 49: 956
  • 127 Li L. Wei E. Lin S. Liu B. Liang F. Synlett 2014; 25: 2271
  • 128 Lin S. Li L. Liang F. Liu Q. Chem. Commun. 2014; 50: 10491
  • 129 Zhang J. Schmalz H.-G. Angew. Chem. Int. Ed. 2006; 45: 6704
  • 130 Pan D. Wei Y. Shi M. Org. Lett. 2016; 18: 3930
  • 131 Flitsch W. Wernsmann P. Tetrahedron Lett. 1981; 22: 719
  • 132 Ren Z. Cao W. Chen J. Wang Y. Ding W. J. Heterocycl. Chem. 2006; 43: 495
  • 133 Cao W. Zhang H. Chen J. Deng H. Shao M. Lei L. Qian J. Zhu Y. Tetrahedron 2008; 64: 6670
  • 134 Xue S. Liu J. Qing X. Wang C. RSC Adv. 2016; 6: 67724
  • 135 Sathishkannan G. Tamilarasan VJ. Srinivasan K. Org. Biomol. Chem. 2017; 15: 1400
  • 136 King LC. J. Am. Chem. Soc. 1948; 70: 2685
  • 137 Harrington P. Kerr MA. Tetrahedron Lett. 1997; 38: 5949
  • 138 Kerr MA. Keddy RG. Tetrahedron Lett. 1999; 40: 5671
  • 139 England DB. Kuss TD. O. Keddy RG. Kerr MA. J. Org. Chem. 2001; 66: 4704
  • 140 England DB. Woo TK. Kerr MA. Can. J. Chem. 2002; 80: 992
  • 141 Grover HK. Lebold TP. Kerr MA. Org. Lett. 2011; 13: 220
  • 142 Emmett MR. Kerr MA. Org. Lett. 2011; 13: 4180
  • 143 Bajtos B. Yu M. Zhao H. Pagenkopf BL. J. Am. Chem. Soc. 2007; 129: 9631
  • 144 Bajtos B. Pagenkopf BL. Org. Lett. 2009; 11: 2780
  • 145 de Nanteuil F. Loup J. Waser J. Org. Lett. 2013; 15: 3738
  • 146 Espejo VR. Li X.-B. Rainier JD. J. Am. Chem. Soc. 2010; 132: 8282
  • 147 De Simone F. Gertsch J. Waser J. Angew. Chem. Int. Ed. 2010; 49: 5767
  • 148 Tanaka M. Ubukata M. Matsuo T. Yasue K. Matsumoto K. Kajimoto Y. Ogo T. Inaba T. Org. Lett. 2007; 9: 3331
  • 149 Uddin MI. Mimoto A. Nakano K. Ichikawa Y. Kotsuki H. Tetrahedron Lett. 2008; 49: 5867
  • 150 Chung SW. Plummer MS. McAllister LA. Oliver RM. Abramite JA. Shen Y. Sun J. Uccello DP. Arcari JT. Price LM. Montgomery JI. Org. Lett. 2011; 13: 5338
  • 151 Niu H. Du C. Xie M. Wang Y. Zhang Q. Qu G. Guo H. Chem. Commun. 2015; 51: 3328
  • 152 Wang C. Ma X. Zhang J. Tang Q. Jiao W. Shao H. Eur. J. Org. Chem. 2014; 4592
  • 153 Caputo R. Ferreri C. Palumbo G. Wenkert E. Tetrahedron Lett. 1984; 25: 577
  • 154 Vankar YD. Kumaravel G. Rao CT. Synth. Commun. 1989; 19: 2181
  • 155 Huang H. Ji X. Wu W. Jiang H. Chem. Commun. 2013; 49: 3351
  • 156 Lindstrom KJ. Crooks SL. Synth. Commun. 1990; 20: 2335
  • 157 Iyengar R. Schildknegt K. Morton M. Aubé J. J. Org. Chem. 2005; 70: 10645
  • 158 Ok T. Jeon A. Lee J. Lim JH. Hong CS. Lee H.-S. J. Org. Chem. 2007; 72: 7390
  • 159 Medda A. Lee H.-S. Synlett 2009; 921
  • 160 Emmett MR. Grover HK. Kerr MA. J. Org. Chem. 2012; 77: 6634
  • 161 Flisar ME. Emmett MR. Kerr MA. Synlett 2014; 25: 2297
  • 162 Tokimizu Y. Oishi S. Fujii N. Ohno H. Org. Lett. 2014; 16: 3138
  • 163 Shao H. Ekthawatchai S. Wu S. Zou W. Org. Lett. 2004; 6: 3497
  • 164 Shao H. Ekthawatchai S. Chen C.-S. Wu S.-H. Zou W. J. Org. Chem. 2005; 70: 4726
  • 165 Ivanov KL. Villemson EV. Budynina EM. Ivanova OA. Trushkov IV. Melnikov MYa. Chem. Eur. J. 2015; 21: 4975
  • 166 Villemson EV. Budynina EM. Ivanova OA. Skvortsov DA. Trushkov IV. Melnikov MYa. RSC Adv. 2016; 6: 62014
  • 167 Pavlova AS. Ivanova OA. Chagarovskiy AO. Stebunov NS. Orlov NV. Shumsky AN. Budynina EM. Rybakov VB. Trushkov IV. Chem. Eur. J. 2016; 22: 17967