Synthesis 2017; 49(17): 3937-3944
DOI: 10.1055/s-0036-1589011
special topic
© Georg Thieme Verlag Stuttgart · New York

C–H and N–H Bond Annulation of Benzamides with Isonitriles Catalyzed by Cobalt(III)

Deepti Kalsi
Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India   Email: basker@iitk.ac.in
,
Nagaraju Barsu
Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India   Email: basker@iitk.ac.in
,
Pardeep Dahiya
Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India   Email: basker@iitk.ac.in
,
Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India   Email: basker@iitk.ac.in
› Author Affiliations
Financial support provided by SERB (EMR2016/000136) to support this research work is gratefully acknowledged. D.K. thanks IITK, N.B. and Pardeep express gratitude to CSIR for their fellowships.
Further Information

Publication History

Received: 03 March 2017

Accepted after revision: 04 April 2017

Publication Date:
11 May 2017 (eFirst)

Published as part of the Special Topic Cobalt in Organic Synthesis

In memory of Prof. Shunsuke Murahashi for pioneering work in cobalt-catalyzed C–H bond functionalization

Abstract

A simple efficient, atom-economical procedure was developed for the cobalt-catalyzed C–H bond annulation of benzamides with isonitriles under mild conditions. The reaction tolerates a variety of functional group including heterocycles. Diverse 3-(alkylimino)-2-quinolin-8-yl-2,3-dihydro-1H-isoindol-1-ones were synthesized using isonitriles as the C1 source through C–H and N–H bond annulation via C–H bond activation in a ‘green’ solvent. Vinylamides were also used similarly with tert-butyl isonitrile to give 3-(tert-butylimino)-1-quinolin-8-yl-1H-pyrrol-2(5H)-ones.

Supporting Information

 
  • References

    • 1a C–H Bond Activation and Catalytic Functionalization I, Topics in Organometallic Chemistry. Dixneuf PH. Doucet H. Springer; Berlin: 2016
    • 1b Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 1c Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 1d Girard SA. Knauber T. Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
    • 1e Collins KD. Glorius F. Nat. Chem. 2013; 5: 597
    • 1f Corbet M. Decampo F. Angew. Chem. Int. Ed. 2013; 52: 9896
    • 1g Li B. Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
    • 1h Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1i Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 1j Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 1k Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 1l Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 2a Zhu R.-Y. Farmer ME. Chen Y.-Q. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 2b Misal Castro LC. Chatani N. Chem. Lett. 2015; 44: 410
    • 2c Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726

      Selected reviews on C–H bond functionalization using first-row transition-metal catalysts, see:
    • 3a Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 3b Yoshikai N. ChemCatChem 2015; 7: 732
    • 3c Liang Y. Liang Y.-F. Jiao N. Org. Chem. Front. 2015; 2: 403
    • 3d Hyster T. Catal. Lett. 2015; 145: 458
    • 3e Cai X.iH. Xie B. ARKIVOC 2015; (i): 184 ; http://www.arkat-usa.org
    • 3f Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 3g Tasker SZ. Standley EA. Jamison TF. Nature (London) 2014; 509: 299
    • 3h Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 3i Ackermann L. J. Org. Chem. 2014; 79: 8948
    • 3j Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19
    • 3k Gephart RT. Warren TH. Organometallics 2012; 31: 7728
    • 3l Yoshikai N. Synlett 2011; 1047
    • 3m Nakao Y. Chem. Rec. 2011; 11: 242
    • 3n Nakamura E. Yoshikai N. J. Org. Chem. 2010; 75: 6061
    • 3o Kulkarni AA. Daugulis O. Synthesis 2009; 4087
  • 4 Murahashi S. J. Am. Chem. Soc. 1955; 77: 6403
    • 5a Grigorjeva L. Daugulis O. Org. Lett. 2014; 16: 4688
    • 5b Liu X.-G. Zhang S.-S. Jiang C.-Y. Wu J.-Q. Li Q. Wang H. Org. Lett. 2015; 17: 5404
    • 5c Ni J. Li J. Fan Z. Zhang A. Org. Lett. 2016; 18: 5960
    • 6a Barsu N. Bolli SK. Sundararaju B. Chem. Sci. 2017; 8: 2431
    • 6b Williamson P. Galván A. Gaunt MJ. Chem. Sci. 2017; 8: 2588

      For selected recent reviews on isonitrile insertion including C–H bonds, see:
    • 7a Song B. Xu B. Chem. Soc. Rev. 2017; 46: 1103
    • 7b Nenajdenko V. Isonitrile Chemistry: Applications in Synthesis and Material Science. Wiley-VCH; Weinheim: 2012
    • 7c Vlaar T. Ruijter E. Maes BU. Orru RV. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 7d Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 7e Gulevich AV. Zhadanko AG. Orru RV. A. Nenajdenko VG. Chem. Rev. 2010; 110: 5235
    • 7f Dçmling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 7g Isonitrile Chemistry . Academic Press; New York: 1971
    • 8a Hao W. Tian J. Li W. Huang Z. Lei A. Chem. Asian J. 2016; 11: 1664
    • 8b Takamatsu K. Hirano K. Miura M. Org. Lett. 2015; 17: 4066
    • 8c Wang D. Cai S. Ben R. Zhou Y. Li X. Zhao J. Wei W. Qian Y. Synthesis 2014; 46: 2045
    • 8d Zhu C. Xie W. Falck JR. Chem. Eur. J. 2011; 17: 12591

      For C(sp2)–H bond functionalization, see:
    • 9a Kalsi D. Laskar RA. Barsu N. Premkumar JR. Sundararaju B. Org. Lett. 2016; 18: 4198
    • 9b Barsu N. Sen M. Sundararaju B. Chem. Commun. 2016; 52: 1338
    • 9c Barsu N. Kalsi D. Sundararaju B. Chem. Eur. J. 2015; 21: 9364
    • 9d Sen M. Kalsi D. Sundararaju B. Chem. Eur. J. 2015; 21: 15529
    • 9e Kalsi D. Sundararaju B. Org. Lett. 2015; 17: 6118

      For C(sp3)–H bond functionalization, see:
    • 10a Sen M. Emayavaramban B. Barsu N. Premkumar JR. Sundararaju B. ACS Catal. 2016; 6: 2792
    • 10b Barsu N. Rahman MA. Sen M. Sundararaju B. Chem. Eur. J. 2016; 22: 9135

      See selected recent reports on cobalt(III)-catalyzed C–H bond functionalization:
    • 11a Prakash S. Muralirajan K. Cheng C.-H. Angew. Chem. Int. Ed. 2016; 55: 1844
    • 11b Du C. Li P.-X. Zhu X. Suo J.-F. Niu J.-L. Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 13571
    • 11c Maity S. Kancherla R. Dhawa U. Hoque E. Pimparkar S. Maiti D. ACS Catal. 2016; 6: 5493
    • 11d Lerchen A. Vásquez-Céspedes S. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
    • 11e Tan G. He S. Huang X. Liao X. Cheng Y. You J. Angew. Chem. Int. Ed. 2016; 55: 10414
    • 11f Manoharan R. Sivakumar G. Jeganmohan M. Chem. Commun. 2016; 52: 10533
    • 11g Yamaguchi T. Kommagalla Y. Aihara Y. Chatani N. Chem. Commun. 2016; 52: 10129
    • 11h Landge VG. Jaiswal G. Balaraman E. Org. Lett. 2016; 18: 812
    • 11i Hummel JR. Ellman JA. J. Am. Chem. Soc. 2015; 137: 490
    • 11j Patel P. Chang S. ACS Catal. 2015; 5: 853
    • 11k Wang H. Koeller J. Liu W. Ackermann L. Chem. Eur. J. 2015; 21: 15525
    • 11l Thrimurtulu N. Dey A. Maiti D. Volla CM. R. Angew. Chem. Int. Ed. 2016; 55: 12361
    • 11m Grigorjeva L. Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
    • 11n Yoshino T. Ikemoto H. Matsunaga S. Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
    • 11o See also ref. 5a.
  • 12 During the preparation of our manuscript, Wang and Ji reported similar work under different reaction conditions, see: Gu Z.-Y. Liu C.-G. Wang S.-Y. Ji S.-J. J. Org. Chem. 2017; 82: 2223

    • Green solvents for sustainable processes, see:
    • 13a Byrne FP. Jin S. Paggiola G. Petchey TH. M. Clark JH. Farmer TJ. Hunt AJ. McElroy CR. Sherwood J. Sustainable Chem. Processes 2016; 4: 7
    • 13b Fischmeister C. Doucet H. Green Chem. 2011; 13: 741
  • 14 Murthy AR. K. Wong OT. Reynolds DJ. Hall IH. Pharm. Res. 1987; 4: 21