Subscribe to RSS
DOI: 10.1055/s-0036-1589011
C–H and N–H Bond Annulation of Benzamides with Isonitriles Catalyzed by Cobalt(III)
Financial support provided by SERB (EMR2016/000136) to support this research work is gratefully acknowledged. D.K. thanks IITK, N.B. and Pardeep express gratitude to CSIR for their fellowships.Publication History
Received: 03 March 2017
Accepted after revision: 04 April 2017
Publication Date:
11 May 2017 (online)

Published as part of the Special Topic Cobalt in Organic Synthesis
In memory of Prof. Shunsuke Murahashi for pioneering work in cobalt-catalyzed C–H bond functionalization
Abstract
A simple efficient, atom-economical procedure was developed for the cobalt-catalyzed C–H bond annulation of benzamides with isonitriles under mild conditions. The reaction tolerates a variety of functional group including heterocycles. Diverse 3-(alkylimino)-2-quinolin-8-yl-2,3-dihydro-1H-isoindol-1-ones were synthesized using isonitriles as the C1 source through C–H and N–H bond annulation via C–H bond activation in a ‘green’ solvent. Vinylamides were also used similarly with tert-butyl isonitrile to give 3-(tert-butylimino)-1-quinolin-8-yl-1H-pyrrol-2(5H)-ones.
Supporting Information
- Supporting information for this article is available online at https://doi.org /10.1055/s-0036-1589011.
- Supporting Information
-
References
- 1a C–H Bond Activation and Catalytic Functionalization I, Topics in Organometallic Chemistry. Dixneuf PH. Doucet H. Springer; Berlin: 2016
- 1b Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 1c Ackermann L. Acc. Chem. Res. 2014; 47: 281
- 1d Girard SA. Knauber T. Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
- 1e Collins KD. Glorius F. Nat. Chem. 2013; 5: 597
- 1f Corbet M. Decampo F. Angew. Chem. Int. Ed. 2013; 52: 9896
- 1g Li B. Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
- 1h Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 1i Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 1j Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 1k Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
- 1l Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
- 2a Zhu R.-Y. Farmer ME. Chen Y.-Q. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
- 2b Misal Castro LC. Chatani N. Chem. Lett. 2015; 44: 410
- 2c Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 3a Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
- 3b Yoshikai N. ChemCatChem 2015; 7: 732
- 3c Liang Y. Liang Y.-F. Jiao N. Org. Chem. Front. 2015; 2: 403
- 3d Hyster T. Catal. Lett. 2015; 145: 458
- 3e Cai X.iH. Xie B. ARKIVOC 2015; (i): 184 ; http://www.arkat-usa.org
- 3f Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
- 3g Tasker SZ. Standley EA. Jamison TF. Nature (London) 2014; 509: 299
- 3h Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
- 3i Ackermann L. J. Org. Chem. 2014; 79: 8948
- 3j Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19
- 3k Gephart RT. Warren TH. Organometallics 2012; 31: 7728
- 3l Yoshikai N. Synlett 2011; 1047
- 3m Nakao Y. Chem. Rec. 2011; 11: 242
- 3n Nakamura E. Yoshikai N. J. Org. Chem. 2010; 75: 6061
- 3o Kulkarni AA. Daugulis O. Synthesis 2009; 4087
- 4 Murahashi S. J. Am. Chem. Soc. 1955; 77: 6403
- 5a Grigorjeva L. Daugulis O. Org. Lett. 2014; 16: 4688
- 5b Liu X.-G. Zhang S.-S. Jiang C.-Y. Wu J.-Q. Li Q. Wang H. Org. Lett. 2015; 17: 5404
- 5c Ni J. Li J. Fan Z. Zhang A. Org. Lett. 2016; 18: 5960
- 6a Barsu N. Bolli SK. Sundararaju B. Chem. Sci. 2017; 8: 2431
- 6b Williamson P. Galván A. Gaunt MJ. Chem. Sci. 2017; 8: 2588
- 7a Song B. Xu B. Chem. Soc. Rev. 2017; 46: 1103
- 7b Nenajdenko V. Isonitrile Chemistry: Applications in Synthesis and Material Science. Wiley-VCH; Weinheim: 2012
- 7c Vlaar T. Ruijter E. Maes BU. Orru RV. Angew. Chem. Int. Ed. 2013; 52: 7084
- 7d Lang S. Chem. Soc. Rev. 2013; 42: 4867
- 7e Gulevich AV. Zhadanko AG. Orru RV. A. Nenajdenko VG. Chem. Rev. 2010; 110: 5235
- 7f Dçmling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 7g Isonitrile Chemistry . Academic Press; New York: 1971
- 8a Hao W. Tian J. Li W. Huang Z. Lei A. Chem. Asian J. 2016; 11: 1664
- 8b Takamatsu K. Hirano K. Miura M. Org. Lett. 2015; 17: 4066
- 8c Wang D. Cai S. Ben R. Zhou Y. Li X. Zhao J. Wei W. Qian Y. Synthesis 2014; 46: 2045
- 8d Zhu C. Xie W. Falck JR. Chem. Eur. J. 2011; 17: 12591
- 9a Kalsi D. Laskar RA. Barsu N. Premkumar JR. Sundararaju B. Org. Lett. 2016; 18: 4198
- 9b Barsu N. Sen M. Sundararaju B. Chem. Commun. 2016; 52: 1338
- 9c Barsu N. Kalsi D. Sundararaju B. Chem. Eur. J. 2015; 21: 9364
- 9d Sen M. Kalsi D. Sundararaju B. Chem. Eur. J. 2015; 21: 15529
- 9e Kalsi D. Sundararaju B. Org. Lett. 2015; 17: 6118
- 10a Sen M. Emayavaramban B. Barsu N. Premkumar JR. Sundararaju B. ACS Catal. 2016; 6: 2792
- 10b Barsu N. Rahman MA. Sen M. Sundararaju B. Chem. Eur. J. 2016; 22: 9135
- 11a Prakash S. Muralirajan K. Cheng C.-H. Angew. Chem. Int. Ed. 2016; 55: 1844
- 11b Du C. Li P.-X. Zhu X. Suo J.-F. Niu J.-L. Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 13571
- 11c Maity S. Kancherla R. Dhawa U. Hoque E. Pimparkar S. Maiti D. ACS Catal. 2016; 6: 5493
- 11d Lerchen A. Vásquez-Céspedes S. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
- 11e Tan G. He S. Huang X. Liao X. Cheng Y. You J. Angew. Chem. Int. Ed. 2016; 55: 10414
- 11f Manoharan R. Sivakumar G. Jeganmohan M. Chem. Commun. 2016; 52: 10533
- 11g Yamaguchi T. Kommagalla Y. Aihara Y. Chatani N. Chem. Commun. 2016; 52: 10129
- 11h Landge VG. Jaiswal G. Balaraman E. Org. Lett. 2016; 18: 812
- 11i Hummel JR. Ellman JA. J. Am. Chem. Soc. 2015; 137: 490
- 11j Patel P. Chang S. ACS Catal. 2015; 5: 853
- 11k Wang H. Koeller J. Liu W. Ackermann L. Chem. Eur. J. 2015; 21: 15525
- 11l Thrimurtulu N. Dey A. Maiti D. Volla CM. R. Angew. Chem. Int. Ed. 2016; 55: 12361
- 11m Grigorjeva L. Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 11n Yoshino T. Ikemoto H. Matsunaga S. Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
- 11o See also ref. 5a.
- 12 During the preparation of our manuscript, Wang and Ji reported similar work under different reaction conditions, see: Gu Z.-Y. Liu C.-G. Wang S.-Y. Ji S.-J. J. Org. Chem. 2017; 82: 2223
- 13a Byrne FP. Jin S. Paggiola G. Petchey TH. M. Clark JH. Farmer TJ. Hunt AJ. McElroy CR. Sherwood J. Sustainable Chem. Processes 2016; 4: 7
- 13b Fischmeister C. Doucet H. Green Chem. 2011; 13: 741
- 14 Murthy AR. K. Wong OT. Reynolds DJ. Hall IH. Pharm. Res. 1987; 4: 21
Selected reviews on C–H bond functionalization using first-row transition-metal catalysts, see:
For selected recent reviews on isonitrile insertion including C–H bonds, see:
For C(sp2)–H bond functionalization, see:
For C(sp3)–H bond functionalization, see:
See selected recent reports on cobalt(III)-catalyzed C–H bond functionalization:
Green solvents for sustainable processes, see: