Synthesis 2017; 49(17): 3931-3936
DOI: 10.1055/s-0036-1589010
special topic
© Georg Thieme Verlag Stuttgart · New York

Cobalt-Catalyzed Monoselective ortho-C–H Ethylation of Carboxamides with Triethylaluminum

Kun Xu  *
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   eMail: xukun@nynu.edu.cn   eMail: shengzhang@nynu.edu.cn
,
Zhoumei Tan
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   eMail: xukun@nynu.edu.cn   eMail: shengzhang@nynu.edu.cn
,
Haonan Zhang
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   eMail: xukun@nynu.edu.cn   eMail: shengzhang@nynu.edu.cn
,
Sheng Zhang*
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   eMail: xukun@nynu.edu.cn   eMail: shengzhang@nynu.edu.cn
› Institutsangaben
We are grateful to the Natural Science Foundation of China (21602119, U1504208), and for financial support from He’nan Provincial Department of Science and Technology (152300410117).
Weitere Informationen

Publikationsverlauf

Received: 15. Februar 2017

Accepted after revision: 30. März 2017

Publikationsdatum:
29. Mai 2017 (online)


Published as part of the Special Topic Cobalt in Organic Synthesis

Abstract

A 1,10-phenanthroline ligated cobalt catalyst is reported for the ortho-C–H ethylation of aromatic, heteroaromatic, and alkenyl carboxamides with inexpensive triethylaluminum. This reaction represented the first example of cobalt-catalyzed monoselective direct ortho-C–H ethylation reaction with aluminum reagent as an alkyl donor.

Supporting Information

 
  • References


    • For selected recent reviews, see:
    • 1a Su B. Cao ZC. Shi ZJ. Acc. Chem. Res. 2015; 48: 886
    • 1b Liu W. Groves JT. Acc. Chem. Res. 2015; 48: 1727
    • 1c Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
    • 1d Jia F. Li Z. Org. Chem. Front. 2014; 1: 194
    • 1e Mousseau JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 1f Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19

      For recent reviews, see:
    • 2a Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 2b Wei D. Zhu X. Niu JL. Song MP. ChemCatChem 2016; 8: 1242
    • 2c Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208

      For selected examples on cobalt-catalyzed C–H functionalization from the last two years, see:
    • 3a Gensch T. Klauck FJ. R. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
    • 3b Liang Y. Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
    • 3c Nguyen TT. Grigorjeva L. Daugulis O. ACS Catal. 2016; 6: 551
    • 3d Mei R. Loup J. Ackermann L. ACS Catal. 2016; 6: 793
    • 3e Zhang Z.-Z. Liu B. Xu J.-W. Yan S.-Y. Shi B.-F. Org. Lett. 2016; 18: 1776
    • 3f Wu X. Yang K. Zhao Y. Sun H. Li G. Ge H. Nat. Commun. 2015; 6: 6462
    • 3g Sun B. Yoshino T. Kanai M. Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
    • 3h Xu K. Wang ZQ. Zhang JJ. Yu LT. Tan J. Org. Lett. 2015; 17: 4476
    • 3i Hummel JR. Ellman JA. J. Am. Chem. Soc. 2015; 137: 490
    • 3j Li J. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 3635
    • 3k Zhang LB. Hao XQ. Zhang SK. Liu ZJ. Zheng XX. Gong JF. Niu JL. Song MP. Angew. Chem. Int. Ed. 2015; 54: 272
    • 3l Zhang JT. Chen H. Li C. Liu ZX. Wang C. Zhang YH. J. Am. Chem. Soc. 2015; 137: 12990
  • 4 Chen X. Li J.-J. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 78

    • For selected examples, see:
    • 5a Chen Q. Ilies L. Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
    • 5b Chen Q. Ilies L. Yoshikai N. Nakamura E. Org. Lett. 2011; 13: 3232
    • 5c Li B. Wu ZH. Gu YF. Sun CL. Wang BQ. Shi ZJ. Angew. Chem. Int. Ed. 2011; 50: 1109
    • 6a Wang D.-H. Wasa M. Giri R. Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 7190
    • 6b Thuy-Boun PS. Villa G. Dang D. Richardson P. Su S. Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 17508
    • 6c Neufeldt SR. Seigerman CK. Sanford MS. Org. Lett. 2013; 15: 2302

      For selected examples, see:
    • 7a Maity S. Kancherla R. Dhawa U. Hoque E. Pimparkar S. Maiti D. ACS Catal. 2016; 6: 5493
    • 7b Wasa M. Engle KM. Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3680
    • 7c Lewis JC. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2007; 129: 5332

      For selected recent examples, see:
    • 8a Wiest JM. Pöthig A. Bath T. Org. Lett. 2016; 18: 852
    • 8b Zhang S.-Y. li Q. He G. Nack WA. Chen G. J. Am. Chem. Soc. 2015; 137: 531
    • 8c Fruchey ER. Monks BM. Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
    • 8d Gao K. Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
    • 8e Hofmann N. Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
    • 8f Nadres ET. Santos GI. F. Shabashov D. Daugulis O. J. Org. Chem. 2013; 78: 9689
    • 8g Aihara Y. Chatani N. J. Am. Chem. Soc. 2013; 135: 5308
    • 9a Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2016; 138: 10132
    • 9b Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660

      For selected recent examples on C–H methylation, see:
    • 10a Li Q. Li Y. Hu W. Hu R. Li GG. Lu HJ. Chem. Eur. J. 2016; 22: 12286
    • 10b Uemura T. Yamaguchi M. Chatani N. Angew. Chem. Int. Ed. 2016; 55: 3162
    • 10c Kubo T. Chatani N. Org. Lett. 2016; 18: 1698
    • 10d Graczyk K. Haven T. Ackermann L. Chem. Eur. J. 2015; 21: 8812
    • 10e Aihara Y. Wuelbern J. Chatani N. Bull. Chem. Soc. Jpn. 2015; 88: 438
    • 10f Ilies L. Matsubara T. Ichikawa S. Asako S. Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
    • 10g Rosen BR. Simke LR. Thuy-Boun PS. Dixon DD. Yu JQ. Baran PS. Angew. Chem. Int. Ed. 2013; 52: 7317
    • 10h Zhang S.-Y. Li Q. He G. Nack WA. Chen G. J. Am. Chem. Soc. 2013; 135: 12135
  • 11 Wang HQ. Zhang S. Wang ZQ. He MH. Xu K. Org. Lett. 2016; 18: 5628