Synthesis 2017; 49(13): 2873-2888
DOI: 10.1055/s-0036-1589002
psp
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2-Alkenyl-Tethered Anilines

Scott E. Denmark*
Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA   Email: [email protected]
,
Hyung Min Chi
Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA   Email: [email protected]
› Author Affiliations
Supported by: We are grateful for generous financial support from the National Institutes of Health (R01 GM08525).
Further Information

Publication History

Received: 03 February 2017

Accepted after revision: 22 March 2017

Publication Date:
04 May 2017 (online)


Abstract

Three general routes for the synthesis of (E)-2-alkenyl-tethered anilines have been developed. The first route involves a 3-aza-Cope rearrangement of N-allylic anilines in the presence of a Lewis acid. The requisite N-allylic anilines were prepared by the addition of vinylmagnesium reagents to the corresponding aldimines. The second route details a direct cross-metathesis of 2-allylic or 2-homoallylic anilines with styrenes. The third route involves a palladium-catalyzed C–N cross-coupling of aryl halides. Taken together, these three strategies allowed access to the requisite aniline substrates with pendant alkenes at the 2-position with excellent trans selectivities.

Supporting Information

 
  • References

  • 1 Denmark SE. Chi HM. J. Org. Chem. 2017; 82: 3286
    • 2a Sridharan V. Suryavanshi PA. Menéndez JC. Chem. Rev. 2011; 111: 7157
    • 2b Katritzky AR. Rachwal S. Rachwal B. Tetrahedron 1996; 52: 15031

      For general reviews, see:
    • 3a Nubbemeyer U. In The Claisen Rearrangement . Hiersemann M. Nubbemeyer U. Wiley-VCH; Weinheim: 2007. Chap. 10
    • 3b Nubbemeyer U. In Natural Products Synthesis II . Vol. 244. Mulzer J. Springer; Berlin, Heidelberg: 2005: 149-213
    • 3c Majumdar KC. Bhattacharyya T. Chattopadhyay B. Sinha B. Synthesis 2009; 2117
    • 3d Lutz RP. Chem. Rev. 1984; 84: 205
    • 4a Cooper MA. Lucas MA. Taylor JM. Ward AD. Williamson NM. Synthesis 2001; 621
    • 4b Anderson WK. Lai G. Synthesis 1995; 1287
    • 4c Takamatsu N. Inoue S. Kishi Y. Tetrahedron Lett. 1971; 4661
    • 4d Krowicki K. Paillous N. Riviere M. Lattes A. J. Heterocycl. Chem. 1976; 13: 555
    • 4e Jolidon S. Hansen HJ. Helv. Chim. Acta 1977; 60: 978
    • 5a Sadownik JW. Philp D. Angew. Chem. Int. Ed. 2008; 47: 9965
    • 5b Grote RE. Jarvo ER. Org. Lett. 2009; 11: 485
    • 5c Kozlov NG. Basalaeva LI. Russ. J. Gen. Chem. 2001; 71: 250
    • 5d Narasaka K. Shibata T. Heterocycles 1993; 35: 1039
  • 6 Hatano M. Suzuki S. Ishihara K. J. Am. Chem. Soc. 2006; 128: 9998
  • 7 Yip K.-T. Yang M. Law K.-L. Zhu N.-Y. Yang D. J. Am. Chem. Soc. 2006; 128: 3130
  • 8 Katritzky AR. Hong Q. Yang Z. J. Org. Chem. 1994; 59: 7947
    • 9a Chatterjee AK. Choi T.-L. Sanders DP. Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
    • 9b Koh MJ. Nguyen TT. Zhang H. Schrock RR. Hoveyda AH. Nature 2016; 531: 459
    • 10a Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
    • 10b Meek SJ. O’Brien RV. Llaveria J. Schrock RR. Hoveyda AH. Nature 2011; 471: 461
  • 11 Yamamoto H. Ho E. Namba K. Imagawa H. Nishizawa M. Chem. Eur. J. 2010; 16: 11271
  • 12 Jiang F. Wu Z. Zhang W. Tetrahedron 2011; 67: 1501
  • 13 Denmark SE. Kornfilt DJ. P. J. Org. Chem. 2017; 82: 3192
    • 14a Shekhar S. Dunn TB. Kotecki BJ. Mantavon DK. Cullen SC. J. Org. Chem. 2011; 76: 4552
    • 14b Green RA. Hartwig JF. Org. Lett. 2014; 16: 4388
    • 14c Alsabeh PG. Lundgren RJ. McDonald R. Johansson Seechurn CC. C. Colacot TJ. Stradiotto M. Chem. Eur. J. 2013; 19: 2131
    • 15a Choi Y.-M. Int. Patent WO 2015/088271, 2015: 155-156.
    • 15b Wang J. Chen J. Kee CW. Tan C.-H. Angew. Chem. Int. Ed. 2012; 51: 2382
    • 15c Grünanger CU. Breit B. Angew. Chem. Int. Ed. 2008; 47: 7346
  • 16 Nakhla JS. Kampf JW. Wolfe JP. J. Am. Chem. Soc. 2006; 128: 2893
  • 17 Racouchot S. Sylvestre I. Ollivier J. Kozyrkov YY. Pukin A. Kulinkovich OG. Salaün J. Eur. J. Org. Chem. 2002; 2160
  • 18 Watson ID. G. Ritter S. Toste FD. J. Am. Chem. Soc. 2009; 131: 2056
  • 19 Arnold JS. Stone RF. Nguyen HM. Org. Lett. 2010; 12: 4580
  • 20 Shu C. Leither A. Hartwig JF. Angew. Chem. Int. Ed. 2004; 43: 4797
  • 21 Muñiz K. Lishchynskyi A. Streuff J. Nieger M. Escudero-Adán EC. Martínez Belmonte M. Chem. Commun. 2011; 47: 4911
  • 22 Yin Y. Zhao G. J. Fluorine Chem. 2007; 128: 40
  • 23 Harding BA. Melvin PR. Dougherty WJr. Kassel S. Goodson FE. Organometallics 2013; 32: 3570
  • 24 Bruyère D. Bouyssi D. Balme G. Tetrahedron 2004; 60: 4007