Synthesis 2017; 49(16): 3558-3567
DOI: 10.1055/s-0036-1588867
feature
© Georg Thieme Verlag Stuttgart · New York

Photoinduced Coupling Reaction of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide with Interelement Compounds: Application to the Synthesis of Thio- or Selenophosphinates

Yuki Sato
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan   Email: ogawa@chem.osakafu-u.ac.jp
,
Shin-ichi Kawaguchi*
b  Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan   Email: skawa@cc.saga-u.ac.jp
,
Akihiro Nomoto
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan   Email: ogawa@chem.osakafu-u.ac.jp
,
Akiya Ogawa*
a  Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan   Email: ogawa@chem.osakafu-u.ac.jp
› Author Affiliations
This research was supported by a Grant-in-Aid for Exploratory Research (26620149, A.O., 26860168, S.K.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Further Information

Publication History

Received: 13 April 2017

Accepted after revision: 11 May 2017

Publication Date:
04 July 2017 (online)

Abstract

Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TMDPO) is a radical initiator widely used in the field of macromolecular chemistry, but not often applied in synthetic organic chemistry. We have focused­ on the use of TMDPO as a phosphorus source in reactions with different E E compounds, where E E represents a heteroatom–heteroatom­ bond, under photoirradiation. Interestingly, the cross-coupling reaction between TMDPO and disulfides or diselenides successfully affords thio- or selenophosphinates and thio- or selenoesters, respectively. The synthesis of series of thio- and selenophosphinates by this photoinduced cross-coupling reaction is demonstrated.

Supporting Information

 
  • References

  • 1 Quin LD. A Guide to Organophosphorus Chemistry . Wiley Interscience; New York: 2000
    • 2a Ogawa A. Yokoyama K. Yokoyama H. Sekiguchi M. Kambe N. Sonoda N. Tetrahedron Lett. 1990; 31: 5931
    • 2b Ogawa A. Yokoyama K. Yokoyama H. Obayashi R. Kambe N. Sonoda N. J. Chem. Soc., Chem. Commun. 1991; 1748
    • 2c Ogawa A. Tanaka H. Yokoyama H. Obayashi R. Yokoyama K. Sonoda N. J. Org. Chem. 1992; 57: 111
    • 2d Ogawa A. Obayashi R. Doi M. Sonoda N. Hirao T. J. Org. Chem. 1998; 63: 4277
    • 2e Ogawa A. Obayashi R. Ine H. Tsuboi Y. Sonoda N. Hirao T. J. Org. Chem. 1998; 63: 881
    • 2f Tsuchii K. Tsuboi Y. Kawaguchi S.-i. Takahashi J. Sonoda N. Nomoto A. Ogawa A. J. Org. Chem. 2007; 72: 415
  • 3 Kawaguchi S.-i. Nagata S. Shirai T. Tsuchii K. Nomoto A. Ogawa A. Tetrahedron Lett. 2006; 47: 3919
  • 4 Sato A. Yorimitsu H. Oshima K. Angew. Chem. Int. Ed. 2005; 44: 1694
    • 5a Lechtken P. Buethe I. Hesse A. US4324744, 1982
    • 5b Lechtken P. Buethe I. Jacobi M. Trimborn W. US4710523, 1987
  • 6 The absorption maximum of TMDPO is 380 nm (S0 to S1) and 295 nm (S0 to S2). The quantum yield of radical formation is Φ 0.5 to 0.7.
    • 7a Sumiyoshi T. Katayama M. Schnabel W. Chem. Lett. 1985; 14: 1647
    • 7b Sumiyoshi T. Schnabel W. Henne A. Lechtken P. Polymer 1985; 26: 141
    • 8a Decker C. Bendaikha T. J. Appl. Polym. Sci. 1998; 70: 2269
    • 8b Decker C. Zahouily K. Decker D. Nguyen T. Viet T. Polymer 2001; 42: 7551
    • 9a Ikemura K. Ichizawa K. Yoshida M. Ito S. Endo T. Dent. Mater. J. 2008; 27: 765
    • 9b Ikemura K. Ichizawa K. Jogetsu Y. Endo T. Dent. Mater. J. 2010; 29: 122
    • 9c Ikemura K. Kadoma Y. Endo T. Dent. Mater. J. 2011; 30: 769
    • 9d Miletic V. Santini A. Dent. Mater. J. 2012; 31: 717
    • 10a Radke A. Gissibl T. Klotzbücher T. Braun PV. Giessen H. Adv. Mater. 2011; 23: 3018
    • 10b Vasilantonakis N. Terzaki K. Sakellari I. Purlys V. Gray D. Soukoulis CM. Vamvakaki M. Kafesaki M. Farsari M. Adv. Mater. 2012; 24: 1101
  • 11 Tian Y. Zhang Y.-L. Ku J.-F. He Y. Xu B.-B. Chen Q.-D. Xia H. Sun H.-B. Lab Chip 2010; 10: 2902
  • 12 Gansel JK. Thiel M. Rill MS. Decker M. Bade K. Saile V. von Freymann G. Linden S. Wegener M. Science 2009; 325: 1513
    • 13a Lindner E. Vordermaier G. Chem. Ber. 1979; 112: 1456
    • 13b Frey G. Lesiecki H. Lindner E. Vordermaier G. Chem. Ber. 1979; 112: 763
    • 13c Lesiecki H. Lindner E. Vordermaier G. Chem. Ber. 1979; 112: 793
    • 13d Lindner E. Kern H. Chem. Ber. 1984; 117: 355
    • 13e Cho CH. Kim S. Yamane M. Miyauchi H. Narasaka K. Bull. Chem. Soc. Jpn. 2005; 78: 1665
    • 13f Said N. Touil S. Akacha AB. Efrit ML. Phosphorus, Sulfur Silicon Relat. Elem. 2008; 183: 2726
  • 14 Sato Y. Kawaguchi S.-i. Ogawa A. Chem. Commun. 2015; 51: 10385
    • 15a Sluggett GW. Turro C. George MW. Koptyug IV. Turro NJ. J. Am. Chem. Soc. 1995; 117: 5148
    • 15b Kolczak U. Rist G. Dietliker K. Wirz J. J. Am. Chem. Soc. 1996; 118: 6477
    • 15c Sluggett GW. McGarry PF. Koptyug IV. Turro NJ. J. Am. Chem. Soc. 1996; 118: 7367
    • 15d Jockusch S. Koptyug IV. McGarry PF. Sluggett GW. Turro NJ. Watkins DM. J. Am. Chem. Soc. 1997; 119: 11495
    • 15e Jockusch S. Turro NJ. J. Am. Chem. Soc. 1998; 120: 11773
    • 15f Colley CS. Grills DC. Besley NA. Jockusch S. Matousek P. Parker AW. Towrie M. Turro NJ. Gill PM. W. George MW. J. Am. Chem. Soc. 2002; 124: 14952
    • 16a Kawaguchi S.-i. Saga Y. Sato Y. Minamida Y. Nomoto A. Ogawa A. Inorganics 2017; 5: 5
    • 16b Kawaguchi S.-i. Minamida Y. Ohe T. Nomoto A. Sonoda M. Ogawa A. Angew. Chem. Int. Ed. 2013; 52: 1748
  • 17 Kawaguchi S.-i. Minamida Y. Okuda T. Sato Y. Saeki T. Yoshimura A. Nomoto A. Ogawa A. Adv. Synth. Catal. 2015; 357: 2509
  • 18 Schmidt U. Müller A. Markau K. Chem. Ber. 1964; 97: 405
  • 19 Ogawa A. Yokoyama K. Obayashi R. Han L.-B. Kambe N. Sonoda N. Tetrahedron 1993; 49: 1177
  • 20 Troy D. Turpin R. Voigt D. Bull. Soc. Chim. Fr. I-Phys. 1979; 241
  • 21 Craw MT. Alberti A. Depew MC. Wan JK. S. Bull. Chem. Soc. Jpn. 1985; 58: 3675
  • 22 Saiful IS. M. Ohba Y. Mochida K. Yamauchi S. Phys. Chem. Chem. Phys. 2001; 3: 1011
  • 23 Chambers RD. C. Clark HC. Willis CJ. Chem. Ind. (London) 1960; 76
    • 24a Beletskaya I. Moberg C. Chem. Rev. 2006; 106: 2320
    • 24b Kuniyasu H. Ogawa A. Miyazaki S. Ryu I. Kambe N. Sonoda N. J. Am. Chem. Soc. 1991; 113: 9796
    • 24c Ogawa A. Kuniyasu H. Sonoda N. Hirao T. J. Org. Chem. 1997; 62: 8361
    • 24d Kamiya I. Nishinaka E. Ogawa A. Tetrahedron Lett. 2005; 46: 3649
    • 24e Kodama S. Nishinaka E. Nomoto A. Sonoda M. Ogawa A. Tetrahedron Lett. 2007; 48: 6312
    • 24f Higashimae S. Tamai T. Nomoto A. Ogawa A. J. Org. Chem. 2015; 80: 7126
  • 25 E E compounds containing the most commonly used elements were selected for the photoinduced reaction.
  • 26 The bond-dissociation energy (BDE) of the P–Te single bond (297.9 ± 10.0 kJ mol−1) is much weaker than that of P–S (442.0 ± 10.0 kJ mol−1) and P–Se (363.7 ± 10.0 kJ mol−1), as referred to in: Luo YR. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
    • 27a Yoshimura A. Takamachi Y. Han L.-B. Ogawa A. Chem. Eur. J. 2015; 21: 13930
    • 27b Yoshimura A. Takamachi Y. Mihara K. Saeki T. Kawaguchi S.-i. Han L.-B. Nomoto A. Ogawa A. Tetrahedron 2016; 72: 7832
  • 28 To date, R1R2P(O)TeR3 species have not been reported.
  • 29 Loranger MW. Beaton SA. Lines KL. Jakeman DL. Carbohydr. Res. 2013; 379: 43
    • 30a Grayson M. Farley CE. Streuli CA. Tetrahedron 1967; 23: 1065
    • 30b Arisawa M. Ono T. Yamaguchi M. Tetrahedron Lett. 2005; 46: 5669
    • 30c Wang J. Huang X. Ni Z. Wang S. Wu J. Pan Y. Green Chem. 2015; 17: 314
    • 30d Li S. Chen T. Saga Y. Han L.-B. RSC Adv. 2015; 5: 71544
    • 30e Zhang L. Zhang P. Li X. Xu J. Tang G. Zhao Y. J. Org. Chem. 2016; 81: 5588
    • 30f Renard P.-Y. Schwebel H. Vayron P. Josien L. Valleix A. Mioskowski C. Chem. Eur. J. 2002; 8: 2910
    • 31a Kimura T. Murai T. Mizuhata N. Heteroat. Chem. 2005; 16: 185
    • 31b Kawaguchi S.-i. Kotani M. Atobe S. Nomoto A. Sonoda M. Ogawa A. Organometallics 2011; 30: 6766
    • 31c Kobiki Y. Kawaguchi S.-i. Ogawa A. Tetrahedron Lett. 2013; 54: 5453
    • 32a Wada T. Kondoh A. Yorimitsu H. Oshima K. Org. Lett. 2008; 10: 1155
    • 32b Shirai T. Kawaguchi S.-i. Nomoto A. Ogawa A. Tetrahedron Lett. 2008; 49: 4043
    • 32c Kawaguchi S.-i. Shirai T. Ohe T. Nomoto A. Sonoda M. Ogawa A. J. Org. Chem. 2009; 74: 1751
  • 33 Sato Y. Kawaguchi S.-i. Nomoto A. Ogawa A. Angew. Chem. Int. Ed. 2016; 55: 9700
  • 34 Very recently, copper/N-heterocyclic carbene catalyzed vicinal diphosphination of styrenes with (trimethylsilyl)phosphine was reported, see: Okugawa Y. Hirano K. Miura M. Angew. Chem. Int. Ed. 2016; 55: 13558
  • 35 Reich HJ. Renga JM. Reich IL. J. Am. Chem. Soc. 1975; 97: 5434
  • 36 Krief A. Van Wemmel T. Redon M. Dumont W. Delmotte C. Angew. Chem. Int. Ed. 1999; 38: 2245
  • 37 Wang D. Zhao J. Xu W. Shao C. Shi Z. Li L. Zhang X. Org. Biomol. Chem. 2017; 15: 545
  • 38 Imamoto T. Kodera M. Yokoyama M. Synthesis 1982; 134