Synthesis 2017; 49(18): 4191-4198
DOI: 10.1055/s-0036-1588856
special topic
© Georg Thieme Verlag Stuttgart · New York

Chemoselectivity in the Synthesis of 1,2,3-Triazoles from Enolizable Ketones, Primary Alkylamines, and 4-Nitrophenyl Azide

Tomas Opsomer, Joice Thomas*, Wim Dehaen*
  • Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium   Email: wim.dehaen@chem.kuleuven.be
Tomas Opsomer is a doctoral fellow of FWO Vlaanderen (1154417N). Mass spectrometry was made possible by the support of the Hercules Foundation of the Flemish Government (grant 20100225–7).
Further Information

Publication History

Received: 30 March 2017

Accepted after revision: 08 May 2017

Publication Date:
07 June 2017 (eFirst)

Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

In recent years, several organocatalytic/metal-free synthetic pathways towards 1,2,3-triazoles have been reported. One of them is a general metal-free route towards the synthesis of 1,5-di- or fully-substituted 1,2,3-triazoles, designed by our group and named the ‘triazolization’ reaction of ketones. Limitations of this route were encountered in reactions with more activated ketones, where the corresponding 1-(4-nitrophenyl)-1,2,3-triazole was found back as the major product. Interestingly, three different triazoles are formed when 1,3-diphenylacetone is used as the ketone. In the present work, 1,3-diphenylacetone was used as a model substrate to investigate the chemoselectivity of our metal-free route under different reaction circumstances. This led to the conclusion that the formation of the desired 1,2,3-triazole is favored in apolar solvents, at high temperatures, and in the presence of acetic acid. By using one equivalent of acetic acid, previously inaccessible fully decorated 1,2,3-triazoles can be synthesized from simple α-arylketones in moderate to high yields.

Supporting Information

 
  • References

  • 1 New address: J. Thomas, The Bridge at USC and Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089, USA.
  • 2 Dehaen W. Bakulev VA. Chemistry of 1,2,3-Triazoles . Springer; Berlin; 2015

    • For selected articles on applications, see:
    • 3a Special Issue on Click Chemistry Chem. Soc. Rev. 2010; 39: 1221
    • 3b Meldal M. Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 3c Lau YH. Rutledge PJ. Watkinson M. Todd MH. Kaltgrad E. Finn MG. Fokin VV. Sharpless KB. Hawker CJ. Faulkner S. Chem. Soc. Rev. 2011; 40: 2848
    • 3d El-Sagheer AH. Brown T. Acc. Chem. Res. 2012; 45: 1258
    • 3e Thirumurugan P. Matosiuk D. Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 4a Massarotti A. Aprile S. Mercalli V. Del Grosso E. Grosa G. Sorba G. Tron GC. ChemMedChem 2014; 9: 2497
    • 4b Kharb R. Sharma PC. Yar MS. J. Enzyme Inhib. Med. Chem. 2011; 26: 1
    • 4c Sheng C. Zhang W. Curr. Med. Chem. 2011; 18: 733
    • 4d Agalave SG. Maujan SR. Pore VS. Chem. Asian J. 2011; 6: 2696
    • 5a Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed. 2002; 114: 2708
    • 5b Zhang L. Chen X. Xue P. Sun HH. Y. Williams ID. Sharpless KB. Fokin VV. Jia G. J. Am. Chem. Soc. 2005; 127: 15998
  • 6 Gaetke LM. Chow CK. Toxicology 2003; 189: 147
    • 7a John J. Thomas J. Dehaen W. Chem. Commun. 2015; 51: 10797
    • 7b Lima CG. S. Ali A. van Berkel SS. Westermann B. Paixão MW. Chem. Commun. 2015; 51: 10784
    • 8a Ramachary DB. Ramakumar K. Narayana VV. Chem. Eur. J. 2008; 14: 9143
    • 8b Danence LJ. T. Gao Y. Li M. Huang Y. Wang J. Chem. Eur. J. 2011; 17: 3584
    • 8c Belkheira M. El Abed D. Pons JM. Bressy C. Chem. Eur. J. 2011; 17: 12917
    • 8d Rozin YA. Leban J. Dehaen W. Nenajdenko VG. Muzalevskiy VM. Eltsov OS. Bakulev VA. Tetrahedron 2012; 68: 614
    • 8e Seus N. Gonçalves LC. Deobald AM. Savegnago L. Alves D. Paixão MW. Tetrahedron 2012; 68: 10456
    • 8f Wang L. Peng S. Danence LJ. T. Gao Y. Wang J. Chem. Eur. J. 2012; 18: 6088
    • 8g Singh H. Sindhu J. Khurana JM. RSC Adv. 2013; 3: 22360
    • 8h Yeung DK. J. Gao T. Huang J. Sun S. Guo H. Wang J. Green Chem. 2013; 15: 2384
    • 8i Ramachary DB. Shashank AB. Chem. Eur. J. 2013; 19: 13175
    • 8j Li W. Jia Q. Du Z. Wang J. Chem. Commun. 2013; 49: 10187
    • 8k Shashank AB. Karthik S. Madhavachary R. Ramachary DB. Chem. Eur. J. 2014; 20: 16877
    • 8l Li W. Du Z. Huang J. Jia Q. Zhang K. Wang J. Green Chem. 2014; 16: 3003
    • 8m Li W. Wang J. Angew. Chem. Int. Ed. 2014; 53: 14186
    • 8n Ramachary DB. Shashank AB. Karthik S. Angew. Chem. Int. Ed. 2014; 53: 10420
    • 8o Jia Q. Yang G. Chen L. Du Z. Wei J. Zhong Y. Wang J. Eur. J. Org. Chem. 2015; 3435
    • 8p Li W. Du Z. Zhang K. Wang J. Green Chem. 2015; 17: 781
    • 10a Thomas J. Jana S. John J. Liekens S. Dehaen W. Chem. Commun. 2016; 52: 2885
    • 10b Thomas J. Jana S. Liekens S. Dehaen W. Chem. Commun. 2016; 52: 9236
    • 10c Jana S. Thomas J. Dehaen W. J. Org. Chem. 2016; 81: 12426
    • 11a Cheng G. Zeng X. Shen J. Wang X. Cui X. Angew. Chem. Int. Ed. 2013; 52: 13265
    • 11b Kwok SW. Fotsing JR. Fraser RJ. Rodionov VO. Fokin VV. Org. Lett. 2010; 12: 4217
    • 12a Thomas J. John J. Parekh N. Dehaen W. Angew. Chem. Int. Ed. 2014; 126: 10319
    • 12b John J. Thomas J. Parekh N. Dehaen W. Eur. J. Org. Chem. 2015; 4922
    • 13a Fusco R. Bianchetti G. Pocar D. Ugo R. Chem. Ber. 1963; 96: 802
    • 13b Regitz M. Himbert G. Justus Liebigs Ann. Chem. 1970; 734: 70
    • 13c Bourgois J. Mathieu A. Texier F. J. Heterocycl. Chem. 1984; 21: 513
    • 13d Xu X. Li X. Ma L. Ye N. Weng B. J. Am. Chem. Soc. 2008; 130: 14048
    • 14a Lamara K. Smalley RK. Tetrahedron 1991; 47: 2277
    • 14b Tanno M. Sueyoshi S. Kamiya S. Chem. Pharm. Bull. 1982; 30: 3125