Synthesis 2017; 49(16): 3569-3575
DOI: 10.1055/s-0036-1588842
special topic
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Hydroalkenylation of Alkynes through C–F Bond Activation: Synthesis of 2-Fluoro-1,3-dienes

Yota Watabe
Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan   Email: junji@chem.tsukuba.ac.jp
,
Kohei Kanazawa
Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan   Email: junji@chem.tsukuba.ac.jp
,
Takeshi Fujita
Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan   Email: junji@chem.tsukuba.ac.jp
,
Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan   Email: junji@chem.tsukuba.ac.jp
› Author Affiliations
This work was financially supported by JSPS KAKENHI Grant No. JP16H01002 (J.I.) for Precisely Designed Catalysts with Customized Scaffolding, and JSPS KAKENHI Grant No. JP16K20939 (T.F.) for a Grant-in-Aid for Young Scientists (B). We acknowledge Kanto Denka Kogyo Co., Ltd., for a generous gift of ethyl bromodifluoroacetate.
Further Information

Publication History

Received: 24 March 2017

Accepted after revision: 02 May 2017

Publication Date:
12 June 2017 (eFirst)

Published as part of the Special Topic Advanced Strategies in Synthesis with Nickel

Abstract

2-Fluoro-1,3-dienes were synthesized through nickel-catalyzed coupling reactions between β,β-difluorostyrenes and alkynes in the presence of ZrF4 as co-catalyst and a hydride source derived from triethylborane and lithium isopropoxide. Mechanistic studies revealed that the carbon–fluorine bond was cleaved by β-fluorine elimination from intermediary nickelacyclopentenes generated through oxidative cyclization of the two substrates.

Supporting Information

 
  • References


    • For example, see:
    • 1a Kalesse M. Christmann M. Synthesis 2002; 981
    • 1b Christianson DW. Chem. Rev. 2006; 106: 3412
  • 2 Nicolau KC. Snyder SA. Montagnon T. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
    • 4a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 4b Deagostino A. Prandi C. Zavattaro C. Venturello P. Eur. J. Org. Chem. 2006; 2463
    • 4c Negishi E. Huang Z. Wang G. Mohan S. Wang C. Hattori H. Acc. Chem. Res. 2008; 41: 1474
    • 4d De Paolis M. Chataigner I. Maddaluno J. Top. Curr. Chem. 2012; 327: 87

      For reviews on hydroalkenylation of alkenes, see:
    • 5a RajanBabu TV. Synlett 2009; 853
    • 5b Hilt G. Eur. J. Org. Chem. 2012; 4441
    • 5c Greenhalgh MD. Jones AS. Thomas SP. ChemCatChem 2015; 7: 190
    • 6a Arcadi A. Bernocchi E. Burini A. Cacchi S. Marinelli F. Pietroni B. Tetrahedron Lett. 1989; 30: 3465
    • 6b Uno T. Wakayanagi S. Sonoda Y. Yamamoto K. Synlett 2003; 1997
    • 6c Wu J. Yoshikai N. Angew. Chem. Int. Ed. 2016; 55: 336
    • 7a Tsukada N. Setoguchi H. Mitsuboshi T. Inoue Y. Chem. Lett. 2006; 35: 1164
    • 7b Tekavec TN. Louie J. Tetrahedron 2008; 64: 6870
    • 7c Schabel T. Plietker B. Chem. Eur. J. 2013; 19: 6938
    • 8a Mitsudo T. Zhang S.-W. Nagao M. Watanabe Y. J. Chem. Soc., Chem. Commun. 1991; 598
    • 8b Hratchian HP. Chowdhury SK. Gutiérrez-García VM. Amarasinghe KK. D. Heeg MJ. Schlegel HB. Montgomery J. Organometallics 2004; 23: 4636
    • 8c Shibata Y. Hirano M. Tanaka K. Org. Lett. 2008; 10: 2829
    • 8d Mannathan S. Cheng C.-H. Chem. Commun. 2010; 1923
    • 8e Horie H. Koyama I. Kurahashi T. Matsubara S. Chem. Commun. 2011; 2658
  • 9 Ichitsuka T. Fujita T. Ichikawa J. ACS Catal. 2015; 5: 5947
    • 10a Fujita T. Watabe Y. Yamashita S. Tanabe H. Nojima T. Ichikawa J. Chem. Lett. 2016; 45: 964 ; and references cited therein
    • 10b Huang Y. Hayashi T. J. Am. Chem. Soc. 2016; 138: 12340
    • 10c Thornbury RT. Toste FD. Angew. Chem. Int. Ed. 2016; 55: 11629
    • 10d Doi R. Ohashi M. Ogoshi S. Angew. Chem. Int. Ed. 2016; 55: 341
    • 10e Ahrens T. Teltewskoi M. Ahrens M. Braun T. Laubenstein R. Dalton Trans. 2016; 17495
    • 10f Liu Y. Zhou Y. Zhao Y. Qu J. Org. Lett. 2017; 19: 946
    • 10g Wang C.-Q. Ye L. Feng C. Loh T.-P. J. Am. Chem. Soc. 2017; 139: 1762
    • 10h Wu J.-Q. Zhang S.-S. Gao H. Qi Z. Zhou C.-J. Ji W.-W. Liu Y. Chen Y. Li Q. Li X. Wang H. J. Am. Chem. Soc. 2017; 139: 3537
    • 10i Liao F.-M. Cao Z.-Y. Yu J.-S. Zhou J. Angew. Chem. Int. Ed. 2017; 56: 2459
  • 11 Fujita T. Watabe Y. Ichitsuka T. Ichikawa J. Chem. Eur. J. 2015; 21: 13225
    • 12a Liu P. McCarren P. Cheong PH.-Y. Jamison TF. Houk KN. J. Am. Chem. Soc. 2010; 132: 2050
    • 12b Liu P. Montgomery J. Houk KN. J. Am. Chem. Soc. 2011; 133: 6956
    • 13a Ichitsuka T. Fujita T. Arita T. Ichikawa J. Angew. Chem. Int. Ed. 2014; 53: 7564
    • 13b Fujita T. Arita T. Ichitsuka T. Ichikawa J. Dalton Trans. 2015; 19460
  • 14 Tobisu M. Xu T. Shimasaki T. Chatani N. J. Am. Chem. Soc. 2011; 133: 19505
    • 15a Konev AS. Khlebnikov AF. Collect. Czech. Chem. Commun. 2008; 73: 1553
    • 15b Hayashi T. Usuki Y. Wakamatsu Y. Iio H. Synlett 2010; 2843
  • 16 Zheng J. Cai J. Lin J.-H. Guo Y. Xiao J.-C. Chem. Commun. 2013; 7513
  • 17 Stuart DR. Bertrand-Laperle M. Burgess KM. N. Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474