Synthesis 2017; 49(17): 3952-3956
DOI: 10.1055/s-0036-1588814
special topic
© Georg Thieme Verlag Stuttgart · New York

Remarkable Influence of Cobalt Catalysis on Epoxide Ring-Opening with Sulfoxonium Ylides

Megan L. Jamieson
School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand   Email: d.furkert@auckland.ac.nz
,
Nicola Z. Brant
School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand   Email: d.furkert@auckland.ac.nz
,
Margaret A. Brimble*
School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand   Email: d.furkert@auckland.ac.nz
,
Daniel P. Furkert*
School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand   Email: d.furkert@auckland.ac.nz
› Author Affiliations
Support from The University of Auckland is gratefully acknowledged through the award of doctoral scholarships to M.L.J. and N.Z.B.
Further Information

Publication History

Received: 22 March 2017

Accepted after revision: 05 April 2017

Publication Date:
08 May 2017 (eFirst)

Published as part of the Special Topic Cobalt in Organic Synthesis

Abstract

Cobalt demonstrates a remarkable ability to catalytically divert the course of epoxide to oxetane ring expansion via reaction with a sulfoxonium ylide. An expanded survey of transition-metal catalysts has confirmed that cobalt salts uniquely instead deliver homoallylic alcohol products from epoxides, with retention of the original epoxide stereochemistry. The reaction is an unusual example of cobalt-catalysed epoxide­ ring-opening by a carbon nucleophile. A tandem Corey–Chaykovsky/epoxide olefination sequence giving homoallylic alcohols from aldehydes is further demonstrated along with preliminary mechanistic analysis. This communication summarises current understanding and ongoing studies into this intriguing new cobalt-mediated reactivity.

 
  • References


    • Reviews:
    • 1a Hess W. Treutwein J. Hilt G. Synthesis 2008; 3537
    • 1b Röse P. Hilt G. Synthesis 2016; 48: 463
    • 2a Usman M. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Synthesis 2017; 49: 463
    • 2b Wu X. Yang K. Zhao Y. Sun H. Li G. Ge H. Nat. Commun. 2015; 6: 1
    • 2c Barsu N. Bolli SK. Sundararaju B. Chem. Sci. 2017; 8: 2431
    • 3a Schaus SE. Brandes BD. Larrow JF. Tokunaga M. Hansen KB. Gould AE. Furrow ME. Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 1307
    • 3b Ford DD. Nielsen LP. C. Zuend SJ. Musgrave CB. Jacobsen EN. J. Am. Chem. Soc. 2013; 135: 15595 ; and references therein
  • 4 Larrow JF. Quigley PF. In Comprehensive Chirality . Vol. 9 Carreira EM. Yamamoto H. Elsevier; Amsterdam: 2012: 104
    • 5a Okuma K. Tanaka Y. Kaji S. Ohta H. J. Org. Chem. 1983; 48: 5133
    • 5b Butova ED. Barabash AV. Petrova AA. Kleiner CM. Schreiner PR. Fokin AA. J. Org. Chem. 2010; 75: 6229
  • 6 Jamieson ML. Hume PA. Furkert DP. Brimble MA. Org. Lett. 2016; 18: 468
  • 8 For another example of a tandem Corey–Chaykovsky reaction sequence, see: Kumar BS. Venkataramasubramanian V. Sudalai A. Org. Lett. 2012; 14: 2468
    • 9a Larrow JF. Schaus SE. Jacobsen EN. J. Am. Chem. Soc. 1996; 118: 7420
    • 9b Hansen KB. Leighton JL. Jacobsen EN. J. Am. Chem. Soc. 1996; 118: 10924
  • 10 Jacobsen EN. Kakiuchi F. Konsler RG. Larrow JF. Tokunaga M. Tetrahedron Lett. 1997; 38: 773
    • 11a Schaus SE. Jacobsen EN. Tetrahedron Lett. 1996; 37: 7937
    • 11b Bai S. Li B. Zhang X. Yang Q. Li C. Chem. Sci. 2012; 3: 2864
    • 11c White DE. Tadross PM. Lu Z. Jacobsen EN. Tetrahedron 2014; 70: 4165
    • 12a Hinterding K. Jacobsen EN. J. Org. Chem. 1999; 64: 2164
    • 12b Denmark SE. Ahmad M. J. Org. Chem. 2007; 72: 9630
    • 12c North M. Quek SC. Z. Pridmore NE. Whitwood AC. Wu X. ACS Catal. 2015; 5: 3398
    • 13a Mahadevan V. Getzler YD. Y. L. Coates GW. Angew. Chem. Int. Ed. 2002; 41: 2781
    • 13b Getzler YD. Y. L. Mahadevan V. Lobkovsky EB. Coates GW. J. Am. Chem. Soc. 2002; 124: 1174
    • 13c Schmidt JA. R. Mahadevan V. Getzler YD. Y. L. Coates GW. Org. Lett. 2004; 6: 373
    • 13d Getzler YD. Y. L. Mahadevan V. Lobkovsky EB. Coates GW. Pure Appl. Chem. 2004; 76: 557
    • 13e Schmidt JA. R. Lobkovsky EB. Coates GW. J. Am. Chem. Soc. 2005; 127: 11426
    • 14a Nielsen LP. C. Stevenson CP. Blackmond DG. Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 1360
    • 14b Nielsen LP. C. Zuend SJ. Ford DD. Jacobsen EN. J. Org. Chem. 2012; 77: 2486
  • 15 Note that all reactions were conducted under anhydrous conditions, which was determined to be important to obtain high conversion in all ylide reactions, see the experimental section for details.
  • 16 Sipos G. Drinkel EE. Dorta R. Chem. Soc. Rev. 2015; 44: 3834
  • 17 Weber L. Angew. Chem. Int. Ed. 1983; 22: 516
  • 18 Burtoloso AC. B. Dias RM. P. Leonarczyk IA. Eur. J. Org. Chem. 2013; 5005
  • 19 Mangion IK. Weisel M. Tetrahedron Lett. 2010; 51: 5490
  • 20 Bellow JA. Stoian SA. van Tol J. Ozarowski A. Lord RL. Groysman S. J. Am. Chem. Soc. 2016; 138: 5531
  • 21 Guijarro D. Mancheño B. Yus M. Tetrahedron 1992; 48: 4593
  • 22 Schmidt B. J. Org. Chem. 2004; 69: 7672
  • 23 Chen J. Liu D. Fan D. Liu Y. Zhang W. Tetrahedron 2013; 69: 8161
  • 24 Li S. Wang J.-X. Wen X. Ma X. Tetrahedron 2011; 67: 849
  • 25 Schneider U. Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 5909