Synthesis 2017; 49(13): 2901-2906
DOI: 10.1055/s-0036-1588808
special topic
© Georg Thieme Verlag Stuttgart · New York

Enantioselective 4-Hydroxylation of Phenols under Chiral Organoiodine(I/III) Catalysis

a  Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b  ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain   Email: kmuniz@iciq.es
,
Laura Fra
a  Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
› Author Affiliations
Further Information

Publication History

Received: 01 March 2017

Accepted after revision: 05 April 2017

Publication Date:
04 May 2017 (eFirst)

Published as part of the Special Topic Modern Strategies with Iodine in Synthesis

Abstract

A procedure for the intermolecular enantioselective dearomatization of phenols under chiral (I/III) catalysis is reported. This protocol employs 3-chloroperoxybenzoic acid (m-CPBA) as the terminal oxidant together with a defined C 2-symmetric aryl iodide as the effective organocatalyst. This enantioselective reaction proceeds with complete selectivity under mild conditions and enables the hydroxylative dearomatization of a number of phenols to give the corresponding p-quinol products with up to 50% ee.

Supporting Information

 
  • References

    • 2a Richardson RD. Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
    • 2b Ochiai M. Miyamoto K. Eur. J. Org. Chem. 2008; 4229
    • 2c Ochiai M. Chem. Rec. 2007; 7: 12
    • 2d Dohi T. Kita Y. Chem. Commun. 2009; 2073
    • 2e Uyanik M. Ishihara K. Chem. Commun. 2009; 2086
    • 3a Kita Y. Dohi T. Chem. Rec. 2015; 15: 886
    • 3b Pouységu L. Sylla T. Garnier T. Rojas LB. Charris J. Deffieux D. Quideau S. Tetrahedron 2010; 66: 5908
    • 3c Quideau S. Pouységu L. Peixoto PA. Deffieux D. Top. Curr. Chem. 2016; 373: 25-74
    • 3d Uyanik M. Ishihara K. In Asymmetric Dearomatization Reactions . You S.-L. Wiley-VCH; Weinheim: 2016: 129-152
    • 4a Yakura T. Konishi T. Synlett 2007; 765
    • 4b Yakura T. Tian Y. Yamauchi Y. Omoto M. Konishi T. Chem. Pharm. Bull. 2009; 57: 252
    • 4c Yakura T. Omoto M. Chem. Pharm. Bull. 2009; 57: 643
    • 4d Yakura T. Omoto M. Yamauchi Y. Tian Y. Ozono A. Tetrahedron 2010; 66: 5833
  • 5 Uyanik M. Mutsuga T. Ishihara K. Angew. Chem. Int. Ed. 2017; 56: 3956
  • 6 Uyanik M. Mutsuga T. Ishihara K. Molecules 2012; 17: 8604

    • For reviews on enantioselective iodine(III) catalysis:
    • 7a Uyanik M. Ishihara K. J. Synth. Org. Chem. Jpn. 2012; 70: 1116
    • 7b Singh FV. Wirth T. Chem. Asian J. 2014; 9: 950
    • 7c Romero RM. Wöste TH. Muñiz K. Chem. Asian J. 2014; 9: 972
    • 7d Berthiol F. Synthesis 2015; 47: 587
    • 7e Liang H. Ciufolini MA. Angew. Chem. Int. Ed. 2011; 50: 11849
  • 8 Harned AM. Tetrahedron Lett. 2014; 55: 4681
  • 9 Quideau S. Lyvinec G. Marguerit M. Bathany K. Ozanne-Beaudenon A. Buffeteau T. Cavagnat D. Chénedé A. Angew. Chem. Int. Ed. 2009; 48: 4605
  • 10 Volp KA. Harned AM. Chem. Commun. 2013; 49: 3001
    • 11a Dohi T. Maruyama A. Yoshimura M. Morimoto K. Tohma H. Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 11b Dohi T. Maruyama A. Minamitsuji Y. Takenaga N. Kita Y. Chem. Commun. 2007; 1224
    • 11c Dohi T. Takenaga N. Fukushima K. Uchiyama T. Kato D. Shiro M. Fujioka H. Kita Y. Chem. Commun. 2010; 46: 7697
    • 11d Ngatimin M. Frey R. Andrews C. Lupton DW. Hutt OE. Chem. Commun. 2011; 47: 11778
  • 12 Uyanik M. Sasakura N. Mizuno M. Ishihara K. ACS Catal. 2017; 7: 872
    • 13a Dohi T. Maruyama A. Takenaga N. Senami K. Minamitsuji Y. Fujioka H. Caemmerer SB. Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 13b Uyanik M. Yasui T. Ishihara K. Tetrahedron 2010; 66: 5841
    • 13c Uyanik M. Yasui T. Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 13d Uyanik M. Yasui T. Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
    • 13e Dohi T. Takenaga N. Nakae T. Toyoda Y. Yamasaki M. Shiro M. Fujioka H. Maruyama A. Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
    • 14a Pouységu L. Marguerit M. Gagnepain J. Lyvinec G. Eatherton AJ. Quideau S. Org. Lett. 2008; 10: 5211
    • 14b Lebrasseur N. Gagnepain J. Ozanne-Beaudenon A. Léger JM. Quideau S. J. Org. Chem. 2007; 72: 6280
    • 14c Gagnepain J. Castet F. Quideau S. Angew. Chem. Int. Ed. 2007; 46: 1533
    • 14d Gagnepain J. Castet F. Quideau S. Angew. Chem. Int. Ed. 2008; 47: 628

    • For application of the corresponding amination–dearomatization, see:
    • 14e Liang H. Ciufolini MA. Tetrahedron 2010; 66: 5884
    • 14f Kasahara T. Ciufolini MA. Can. J. Chem. 2013; 91: 82
    • 14g Paladino M. Zaifman J. Ciufolini MA. Org. Lett. 2015; 17: 3422
    • 15a Haubenreisser S. Wöste TH. Martínez C. Ishihara K. Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
    • 15b Wöste TH. Muñiz K. Synthesis 2016; 48: 816

      For related contributions:
    • 16a Molnár IG. Gilmour R. J. Am. Chem. Soc. 2016; 138: 5004
    • 16b Banik SM. Medley JW. Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 5000
    • 16c Banik SM. Medley JW. Jacobsen EN. Science (Washington, D. C.) 2016; 353: 51
  • 17 Song H. Liu Y. Liu Y. Wang Q. Org. Lett. 2014; 16: 3240
  • 18 CCDC 1542367 (8) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.