Synthesis 2017; 49(11): 2361-2373
DOI: 10.1055/s-0036-1588783
short review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Synthesis of Spirolactones

Yelena Mostinski, David Lankri, Dmitry Tsvelikhovsky*
  • Institute for Drug Research, Division of Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel   Email: dmitryt@ekmd.huji.ac.il
Further Information

Publication History

Received: 08 March 2017

Accepted: 17 March 2017

Publication Date:
18 April 2017 (eFirst)

Abstract

Spiranoid lactone structures can frequently be observed as scaffold segments of various biochemical compounds and drugs of natural origin. Examples of these structures have been identified among terpenoids, alkaloids, steroids, carbohydrates, and many other natural products. Such a broad natural diversity and biological activity allows a wide spectrum of these systems to be attractive targets for synthetic and medicinal chemists. Covering a broad spectrum of recognized approaches toward the design of spirolactones established over the past several decades, this review focuses on transition-metal-catalyzed synthesis, which is the most prominent methodology reported to date.

1 Introduction

2 Patterned Approaches

2.1 Cyclocarbonylation

2.2 Hydroalkylation/Arylation of Hydroxy α,β-Acetylenic Esters

2.3 [2+2+2]-Cyclotrimerization: Rapid Access to Spirobenzofuranone Scaffolds

2.4 Cyclization of Allenoic Acids/Allenoates

2.5 Cycloisomerization–Oxidation of Homopropargyl Alcohols

2.6 Hydroalkoxylation of Alkynoic or Alkenoic Acids

2.7 C–H Carbonylation: Access to Spirobenzofuranone and Spiroisochromanone Derivatives

2.8 Alkylative Spirolactonization of α,β-Unsaturated Esters

2.9 Olefin Ring-Closing Metathesis

2.10 Reductive Opening of Epoxides

2.11 Intramolecular C–H Insertion

3 Nonpatterned Approaches

3.1 Azomethine Ylide Cycloaddition

3.2 Hydrohydroxyalkylation of Vicinal Diols

3.3 Photoredox Catalysis: C-Alkylation of Alcohols

3.4 Carbonylative Spirolactonization of Hydroxycyclopropanols

3.5 Copper-Catalyzed Alkylation of β-Keto Esters

4 Conclusion

 
  • References

    • 1a Pitt B. Zannad F. Remme WJ. Cody R. Castaigne A. Perez A. Palensky J. Wittes J. N. Engl. J. Med. 1999; 341: 709
    • 1b Farquharson CA. Struthers AD. Circulation 2000; 101: 594
    • 2a Nauen R. Bretschneider T. Elbert A. Fischer R. Tieman R. Pestic. Outlook 2003; 14: 243
    • 2b Bretschneider T. Benet-Buchholz J. Fischer R. Nauen R. Chimia 2003; 57: 697
    • 3a Keller S. Schadt HS. Ortel I. Süssmuth RD. Angew. Chem. Int. Ed. 2007; 46: 8284
    • 3b Riedlinger J. Reicke A. Zähner H. Krismer B. Bull AT. Maldonado LA. Ward AC. Goodfellow M. Bister B. Bischoff D. Sussmuth RD. J. Antibiot. 2004; 57: 271
    • 4a Snider BB. Zeng H. J. Org. Chem. 2003; 68: 545
    • 4b Becker MH. Chua P. Downham R. Douglas CJ. Garg NK. Hiebert S. Jaroch S. Matsuoka RT. Middleton JA. Ng FW. Overman LE. J. Am. Chem. Soc. 2007; 129: 11987
    • 4c Cha JY. Huang Y. Pettus TR. Angew. Chem. Int. Ed. 2009; 48: 9519
    • 4d Cha JY. Yeoman JT. Reisman SE. J. Am. Chem. Soc. 2011; 133: 14964

      For relevant examples of esterification reactions in the synthesis of spirolactones, see:
    • 5a Desmaële D. d’Angelo J. Tetrahedron Lett. 1989; 30: 345
    • 5b Pomper MG. Kochanny MJ. Thieme AM. Carlson KE. Vanbrocklin HF. Mathias CJ. Welch MJ. Katzenellenbogen JA. Nucl. Med. Biol. 1992; 19: 461
    • 5c Carlson RM. Yang Q. Tetrahedron Lett. 1994; 35: 7919
    • 5d Taylor SK. Chmiel NH. Mann EE. Silver ME. Vyvyan JR. Synthesis 1998; 1009
    • 5e Diethelm S. Schindler CS. Carreira EM. Chem. Eur. J. 2014; 20: 6071

      For relevant examples of halolactonization reaction in the synthesis of spirolactones, see:
    • 6a Zoretic PA. Bhakta C. Khan RH. Tetrahedron Lett. 1983; 24: 1125
    • 6b Bernet B. Bishop PM. Caron M. Kawamata T. Roy BL. Ruest L. Sauvé G. Soucy P. Deslongchamps PA. Can. J. Chem. 1985; 63: 2810
    • 6c Zhou Q. Snider BB. Org. Lett. 2008; 10: 1401
    • 6d Valerio V. Mostinski Y. Kotikalapudi R. Tsvelikhovsky D. Chem. Eur. J. 2016; 22: 2640
    • 6e Sugi M. Nagase R. Misaki T. Nakatsuji H. Tanabe Y. Eur. J. Org. Chem. 2016; 4834
    • 6f Zheng K. Yang Y. Zhao J. Yin C. Lin L. Liu X. Feng X. Chem. Eur. J. 2010; 16: 9969

      For relevant examples of radical cyclization in synthesis of spirolactones, see:
    • 7a Curran DP. Jiaang WT. Palovich M. Tsai YM. Synlett 1993; 403
    • 7b Nájera C. Yus M. Org. Prep. Proced. Int. 1995; 27: 383
    • 7c Machrouhi F. Namy JL. Tetrahedron 1998; 54: 11111
    • 7d Molander GA. Machrouhi F. J. Org. Chem. 1999; 64: 4119
    • 7e Sanai Y. Morita Y. Asano Y. Ishizaki K. Kubota K. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 1161

      For additional methods in the synthesis of spirolactones, see:
    • 8a Canonne P. Foscolos GB. Belanger D. J. Org. Chem. 1980; 45: 1828
    • 8b Rieke RD. Sell MS. Xiong H. J. Org. Chem. 1995; 60: 5143
    • 8c Choudhury PK. Foubelo F. Yus M. Tetrahedron 1999; 55: 10779
    • 8d Bartoli A. Rodier F. Commeiras L. Parrain JL. Chouraqui G. Nat. Prod. Rep. 2011; 28: 763
    • 8e Zheng J. Lin L. Kuang Y. Zhao J. Liu X. Feng X. Chem. Commun. 2014; 50: 994
    • 10a Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
    • 10b Barnard CF. Organometallics 2008; 27: 5402
    • 10c Brennführer A. Neumann H. Beller M. ChemCatChem 2009; 1: 28
    • 10d Wu XF. Neumann H. Beller M. Chem. Rev. 2012; 113: 1
  • 11 Larock RC. Riefling B. Fellows CA. J. Org. Chem. 1978; 4: 3131
  • 12 El Ali B. Alper H. J. Org. Chem. 1991; 56: 5357
  • 13 Nicolaou KC. Wu TR. Sarlah D. Shaw DM. Rowcliffe E. Burton DR. J. Am. Chem. Soc. 2008; 130: 11114

    • For additional examples of the preparation of spirolactones by Pd-mediated cyclocarbonylation, see:
    • 14a Ohe K. Takahashi H. Uemura S. Sugita N. J. Org. Chem. 1987; 52: 4859
    • 14b Tamaru Y. Hojo M. Yoshida ZI. Tetrahedron Lett. 1987; 28: 325
    • 14c Toda S. Miyamoto M. Kinoshita H. Inomata K. Bull. Chem. Soc. Jpn. 1991; 64: 3600
    • 14d Compain P. Goré J. Vatèle JM. Tetrahedron 1996; 52: 10405
    • 14e Yu WY. Alper H. J. Org. Chem. 1997; 62: 5684
    • 14f Ogawa A. Kuniyasu H. Sonoda N. Hirao T. J. Org. Chem. 1997; 62: 8361
    • 14g Hu Y. Yang Z. Org. Lett. 2001; 3: 1387
    • 14h Jiang ZX. Qing FL. Tetrahedron Lett. 2001; 42: 9051
    • 14i Fukuta Y. Matsuda I. Itoh K. Tetrahedron Lett. 2001; 42: 1301
    • 14j Gabriele B. Salerno G. Plastina P. Costa M. Crispini A. Adv. Synth. Catal. 2004; 346: 351
    • 14k Chen X. Wang H. Jin X. Feng J. Wang Y. Lu P. Chem. Commun. 2011; 47: 2628
  • 15 Ma S. Wu B. Jiang X. Zhao S. J. Org. Chem. 2005; 70: 256
  • 16 Chow YL. Huang YJ. Dragojlovic V. Can. J. Chem. 1995; 73: 740
  • 17 Yoneda E. Zhang SW. Zhou DY. Onitsuka K. Takahashi S. J. Org. Chem. 2003; 68: 8571
  • 18 Cheng X. Jiang X. Yu Y. Ma S. J. Org. Chem. 2008; 73: 8960
  • 19 Arcadi A. Bernocchi E. Burini A. Cacchi S. Marinelli F. Pietroni B. Tetrahedron 1988; 44: 481
  • 20 Arcadi A. Cacchi S. Fabrizi G. Marinelli F. Pace P. Eur. J. Org. Chem. 1999; 3305
  • 21 Ramon RS. Pottier C. Gómez-Suárez A. Nolan SP. Adv. Synth. Catal. 2011; 353: 1575
  • 22 Yamamoto Y. Shibano S. Kurohara T. Shibuya M. J. Org. Chem. 2014; 79: 4503
    • 23a Chopade PR. Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 23b Domínguez G. Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
  • 24 Chang HT. Jeganmohan M. Cheng CH. Chem. Commun. 2005; 39: 4955
  • 25 Tanaka K. Osaka T. Noguchi K. Hirano M. Org. Lett. 2007; 9: 1307
    • 26a Pauze RH. Waller DP. Whritenour DC. Zuraw MJ. J. Chem. Soc., Chem. Commun. 1994; 4: 381
    • 26b Burkinshaw SM. Griffiths J. Towns AD. J. Mater. Chem. 1998; 8: 2677

      For selected reviews on transitional-metal-catalyzed reactions of allenes, see:
    • 27a Zimmer R. Dinesh CU. Nandanan E. Khan FA. Chem. Rev. 2000; 100: 3067
    • 27b Ma S. Acc. Chem. Res. 2003; 36: 701
    • 27c Ma S. Chem. Rev. 2005; 105: 2829
  • 28 Ma S. Gu Z. J. Am. Chem. Soc. 2005; 127: 6182
  • 29 Shi Y. Roth KE. Ramgren SD. Blum SA. J. Am. Chem. Soc. 2009; 131: 18022
  • 30 Chen B. Ma S. Chem. Eur. J. 2011; 17: 754
  • 31 Trost BM. Rhee YH. J. Am. Chem. Soc. 2002; 124: 2528
  • 32 Trost BM. Rhee YH. J. Am. Chem. Soc. 1999; 121: 11680
  • 33 Shu C. Liu MQ. Sun YZ. Ye LW. Org. Lett. 2012; 14: 4958
  • 34 Reddy MS. Kumar YK. Thirupathi NA. Org. Lett. 2012; 14: 14824
  • 35 Kumar YK. Kumar GR. Reddy MS. Org. Biomol. Chem. 2016; 14: 1252

    • For preparation of simple lactones by hydroalkoxylation, see:
    • 36a Amos RA. Katzenellenbogen JA. J. Org. Chem. 1978; 43: 560
    • 36b Yamamoto M. J. Chem. Soc., Perkin Trans. 1 1981; 582
    • 36c Rosenfeld DC. Shekhar S. Takemiya A. Utsunomiya M. Hartwig JF. Org. Lett. 2006; 8: 4179
    • 36d Genin E. Toullec PY. Antoniotti S. Brancour C. Genêt JP. Michelet V. J. Am. Chem. Soc. 2006; 128: 3112
  • 37 Rammah MM. Othman M. Ciamala K. Strohmann C. Rammah MB. Tetrahedron 2008; 64: 3505
  • 38 Aleman J. DelSolar V. Navarro-Ranninger C. Chem. Commun. 2010; 46: 454
  • 39 Adrio LA. Quek LS. Taylor JG. Hii KK. Tetrahedron 2009; 65: 10334
  • 40 Albarghouti G. Kotikalapudi R. Lankri D. Valerio V. Tsvelikhovsky D. Chem. Commun. 2016; 52: 3095
  • 41 Mostinski Y. Valerio V. Lankri D. Tsvelikhovsky D. J. Org. Chem. 2015; 80: 10464

    • For selected reviews on C–H activation, see:
    • 42a Jia C. Kitamura T. Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 42b Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 42c Davies HM. Du Bois J. Yu JQ. Chem. Soc. Rev. 2011; 40: 1855
    • 42d Gutekunst WR. Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 42e Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
  • 43 Lu Y. Leow D. Wang X. Engle KM. Yu JQ. Chem. Sci. 2011; 2: 967
  • 44 Yang M. Jiang X. Shi WJ. Zhu QL. Shi ZJ. Org. Lett. 2013; 15: 690
  • 45 Parnes R. Kshirsagar UA. Werbeloff A. Regev C. Pappo D. Org. Lett. 2012; 14: 3324
  • 46 Rollin Y. Derien S. Dunach E. Gebehenne C. Perichon J. Tetrahedron 1993; 49: 7723
  • 47 Li Z. Li R. Gan M. Jiang L. Li Z. Tetrahedron Lett. 2015; 56: 5541
    • 48a Michaut M. Santelli M. Parrain JL. J. Organomet. Chem. 2000; 606: 93
    • 48b Michaut M. Santelli M. Parrain JL. Tetrahedron Lett. 2003; 44: 2157
    • 49a Langer P. Albrecht U. Synlett 2002; 1841
    • 49b Albrecht U. Langer P. Tetrahedron 2007; 63: 4648
    • 50a Gansäuer A. Bluhm H. Pierobon M. J. Am. Chem. Soc. 1998; 120: 12849
    • 50b Gansäuer A. Pierobon M. Bluhm H. Angew. Chem. Int. Ed. 1998; 37: 101
    • 50c Gansäuer A. Bluhm H. Chem. Commun. 1998; 19: 2143
    • 51a Gansaeuer A. Bluhm H. Rinker B. Narayan S. Schick M. Lauterbach T. Pierobon M. Chem. Eur. J. 2003; 9: 531
    • 51b Lazarski KE. Akpinar B. Thomson RJ. Tetrahedron Lett. 2013; 54: 635
    • 51c Yeoman JT. Cha JY. Mak VW. Reisman SE. Tetrahedron 2014; 70: 4070
  • 52 Paulissen R. Reimlinger H. Hayez E. Hubert AJ. Teyssié P. Tetrahedron Lett. 1973; 2233
  • 53 Doyle MP. Dyatkin AB. J. Org. Chem. 1995; 60: 3035

    • For further discussion on rhodium-catalyzed intramolecular C–H insertion, see:
    • 54a Magnus P. Rainey T. Lynch V. Tetrahedron Lett. 2003; 44: 2459
    • 54b Villalobos MN. Wood JL. Tetrahedron Lett. 2009; 50: 6450
    • 54c Lloyd MG. Taylor RJ. Unsworth WP. Org. Lett. 2014; 16: 2772
    • 54d Lloyd MG. D’Acunto M. Taylor RJ. Unsworth WP. Tetrahedron 2015; 71: 7107
  • 55 Hodgson DM. Angrish D. Adv. Synth. Catal. 2006; 348: 2509
  • 56 Rodier F. Rajzmann M. Parrain JL. Chouraqui G. Commeiras L. Chem. Eur. J. 2013; 19: 2467
  • 57 Grigg R. Tetrahedron: Asymmetry 1995; 6: 2475
  • 58 Grigg R. Sarker MA. Tetrahedron 2006; 62: 10332
  • 59 McInturff EL. Mowat J. Waldeck AR. Krische M. J. Am. Chem. Soc. 2013; 135: 17230
  • 60 Jeffrey JL. Terrett JA. MacMillan DW. Science 2015; 349: 1532
    • 61a Li Y. Ye Z. Bellman TM. Chi T. Dai MJ. Org. Lett. 2015; 17: 2186
    • 61b Ye Z. Dai MJ. Org. Lett. 2015; 17: 2190
    • 61c Ye Z. Gettys KE. Shen X. Dai MJ. Org. Lett. 2015; 17: 6074
  • 62 Davis DC. Walker KL. Hu C. Zare RN. Waymouth RM. Dai M. J. Am. Chem. Soc. 2016; 138: 10693
  • 63 Deng QH. Wadepohl H. Gade LH. J. Am. Chem. Soc. 2012; 134: 2946