Synlett 2017; 28(12): 1407-1421
DOI: 10.1055/s-0036-1588778
account
© Georg Thieme Verlag Stuttgart · New York

Substituent Effects on Carbon Acidity in Aqueous Solution and at Enzyme Active Sites

Tina L. Amyes, John P. Richard*
  • Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA   Email: jrichard@buffalo.edu
Further Information

Publication History

Received: 07 February 2017

Accepted after revision: 15 March 2017

Publication Date:
10 April 2017 (eFirst)

Abstract

Methods are described for the determination of pK as for weak carbon acids in water. The application of these methods to the determination of the pK as for a variety of carbon acids including nitriles, imidazolium cations, amino acids, peptides and their derivatives and, α-iminium cations is presented. The substituent effects on the acidity of these different classes of carbon acids are discussed, and the relevance of these results to catalysis of the deprotonation of amino acids by enzymes and by pyridoxal 5′-phosphate is reviewed. The procedure for estimating the pK a of uridine 5′-phosphate for C-6 deprotonation at the active site of orotidine 5′-phosphate decarboxylase is described, and the effect of a 5-F substituent on carbon acidity of the enzyme-bound substrate is discussed.

1 Introduction

2 The Carbon Acidity of Ethyl Thioacetate

3 The Carbon Acidity of Carboxylic Acid Derivatives

4 The Carbon Acidity of Imidazolium Cations

5 The α-Carbon Acidity of Amino Acids, Peptides and Their Derivatives

6 Electrophilic Catalysis of Deprotonation of Amino Acids: The α-Carbon Acidity of Iminium Cations

7 pK as for Carbon Acids at Enzyme Active Sites

8 Concluding Remarks

 
  • References

  • 1 Jencks WP. Catalysis in Chemistry and Enzymology . McGraw-Hill; New York; 1969: 519
  • 2 Lienhard GE. Wang T.-C. J. Am. Chem. Soc. 1968; 90: 3781
  • 3 Kurz LC. Shah S. Crane BR. Donald LJ. Duckworth HW. Drysdale GR. Biochemistry 1992; 31: 7899
  • 4 Thibblin A. Jencks WP. J. Am. Chem. Soc. 1979; 101: 4963
  • 5 Richard JP. Tetrahedron 1995; 51: 1535
  • 6 Pearson RG. Dillon RL. J. Am. Chem. Soc. 1953; 75: 2439
  • 7 Amyes TL. Richard JP. J. Am. Chem. Soc. 1992; 114: 10297
    • 8a Jencks WP. Acc. Chem. Res. 1980; 13: 161
    • 8b Jencks WP. Acc. Chem. Res. 1976; 9: 425
  • 9 Richard JP. J. Am. Chem. Soc. 1984; 106: 4926
  • 10 Jencks WP. Gresser MJ. J. Am. Chem. Soc. 1977; 99: 6963
    • 11a Tapuhi E. Jencks WP. J. Am. Chem. Soc. 1982; 104: 5758
    • 11b Chiang Y. Kresge AJ. Tang YS. Wirz J. J. Am. Chem. Soc. 1984; 106: 460
  • 12 Amyes TL. Richard JP. J. Am. Chem. Soc. 1996; 118: 3129
  • 13 Richard JP. Williams G. Gao J. J. Am. Chem. Soc. 1999; 121: 715
  • 14 Richard JP. Williams G. O’Donoghue AC. Amyes TL. J. Am. Chem. Soc. 2002; 124: 2957
  • 15 Amyes TL. Richard JP. In Proton Transfer to and From Carbon in Model Reactions . In Hydrogen-Transfer Reactions . Hynes JT. Klinman JP. Limbach H.-H. Schowen RL. Wiley-VCH; Weinheim; 2007: 949-973
  • 16 Richard JP. Amyes TL. Toteva MM. Acc. Chem. Res. 2001; 34: 981
    • 17a Kaatze U. Pottel R. Schumacher A. J. Phys. Chem. 1992; 96: 6017
    • 17b Kaatze U. J. Chem. Eng. Data 1989; 34: 371
    • 17c Giese K. Kaatze U. Pottel R. J. Phys. Chem. 1970; 74: 3718
  • 18 Amyes TL. Richard JP. Jagannadham V. Spec. Publ.—R. Soc. Chem. 1995; 148: 334
  • 19 Keeffe JR. Kresge AJ. Kinetics and Mechanism of Enolization and Ketonization . In The Chemistry of Enols . Rappoport Z. John Wiley & Sons; Chichester; 1990: 399-480
  • 20 Wiberg KB. Ochterski J. Streitwieser A. J. Am. Chem. Soc. 1996; 118: 8291
  • 21 Jagannadham V. Amyes TL. Richard JP. J. Am. Chem. Soc. 1993; 115: 8465
  • 22 Hojatti M. Kresge AJ. Wang W.-H. J. Am. Chem. Soc. 1987; 109: 4023
  • 23 Ahrens ML. Eigen M. Kruse W. Maas G. Ber. Bunsen Ges. Phys. Chem. 1970; 74: 380
  • 24 Hoefnagel AJ. Hoefnagel MA. Wepster BM. J. Am. Chem. Soc. 1976; 98: 6194
  • 25 Wiberg KB. Castejon H. J. Org. Chem. 1995; 60: 6327
    • 26a Herrmann WA. Köcher C. Angew. Chem. Int. Ed. 1997; 36: 2162
    • 26b Kaufhold S. Petermann L. Staehle R. Rau S. Coord. Chem. Rev. 2015; 304–305: 73
  • 27 Bourissou D. Guerret O. Gabbaie FP. Bertrand G. Chem. Rev. 2000; 100: 39
    • 28a Chiang P.-C. Bode JW. RSC Catal. Ser. 2011; 6: 399
    • 28b Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 29a Thomson JE. Rix K. Smith AD. Org. Lett. 2006; 8: 3785
    • 29b Nyce GW. Lamboy JA. Connor EF. Waymouth RM. Hedrick JL. Org. Lett. 2002; 4: 3587
  • 30 Arduengo AJ. III. Acc. Chem. Res. 1999; 32: 913
  • 31 Amyes TL. Diver ST. Richard JP. Rivas FM. Toth K. J. Am. Chem. Soc. 2004; 126: 4366
    • 32a Washabaugh MW. Jencks WP. J. Am. Chem. Soc. 1989; 111: 674
    • 32b Washabaugh MW. Jencks WP. Biochemistry 1988; 27: 5044
    • 33a Massey RS. Quinn P. Zhou S. Murphy JA. O’Donoghue AC. J. Phys. Org. Chem. 2016; 29: 735
    • 33b Massey RS. Collett CJ. Lindsay AG. Smith AD. O’Donoghue AC. J. Am. Chem. Soc. 2012; 134: 20421
  • 34 Alder RW. Diaminocarbenes: Exploring Structure and Reactivity . In Carbene Chemistry: From Fleeting Intermediates to Powerful Reagents . Bertrand G. FontisMedia S.A. and Marcel Dekker Inc; Lausanne and New York; 2002: 153-176
    • 35a Maier G. Endres J. Eur. J. Org. Chem. 1998; 1517
    • 35b McGibbon GA. Heinemann C. Lavorato DJ. Schwarz H. Angew. Chem. Int. Ed. 1997; 36: 1478
  • 36 Kemp DS. Racemization in Peptide Synthesis . In The Peptides . Vol. 1 Undenfriend S. Meienhofer J. Academic Press; New York; 1979
  • 37 Bada JL. Kvenvolden KA. Peterson E. Nature 1973; 245: 308
  • 38 Helfman PM. Bada JL. Nature 1976; 262: 279
  • 39 Rios A. Amyes TL. Richard JP. J. Am. Chem. Soc. 2000; 122: 9373
  • 40 Rios A. Richard JP. J. Am. Chem. Soc. 1997; 119: 8375
  • 41 Rios A. Richard JP. Amyes TL. J. Am. Chem. Soc. 2002; 124: 8251
    • 42a Ho J. Coote ML. Easton CJ. J. Org. Chem. 2011; 76: 5907
    • 42b Ho J. Easton CJ. Coote ML. J. Am. Chem. Soc. 2010; 132: 5515
  • 43 Patrick JS. Yang SS. Cooks RG. J. Am. Chem. Soc. 1996; 118: 231
  • 44 Price WD. Jockusch RA. Williams ER. J. Am. Chem. Soc. 1998; 120: 3474
  • 45 Richard JP. Amyes TL. Bioorg. Chem. 2004; 32: 354
  • 46 Rudnick G. Abeles RH. Biochemistry 1975; 14: 4515
  • 47 Rubinstein A. Major DT. J. Am. Chem. Soc. 2009; 131: 8513
  • 48 Buschiazzo A. Goytia M. Schaeffer F. Degrave W. Shepard W. Grégoire C. Chamond N. Cosson A. Berneman A. Coatnoan N. Alzari PM. Minoprio P. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1705
  • 49 Lundqvist T. Fisher SL. Kern G. Folmer RH. A. Xue Y. Newton DT. Keating TA. Alm RA. de Jonge BL. M. Nature 2007; 447: 817
  • 50 Hwang KY. Cho CS. Kim SS. Sung HC. Yu YG. Cho Y. Nat. Struct. Biol. 1999; 6: 422
  • 51 Pillai B. Cherney MM. Diaper CM. Sutherland A. Blanchard JS. Vederas JC. James MN. G. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8668
  • 52 Williams G. Maziarz EP. Amyes TL. Wood TD. Richard JP. Biochemistry 2003; 42: 8354
  • 53 Puig E. Garcia-Viloca M. González-Lafont A. Lluch JM. J. Phys. Chem. A 2006; 110: 717
  • 54 Richard JP. Amyes TL. Goryanova B. Zhai X. Curr. Opin. Chem. Biol. 2014; 21: 1
    • 55a Kukic P. Farrell D. McIntosh LP. García-Moreno EB. Jensen KS. Toleikis Z. Teilum K. Nielsen JE. J. Am. Chem. Soc. 2013; 135: 16968
    • 55b Simonson T. Carlsson J. Case DA. J. Am. Chem. Soc. 2004; 126: 4167
  • 56 Möbitz H. Bruice TC. Biochemistry 2004; 43: 9685
  • 57 Marcus RA. J. Phys. Chem. 1968; 72: 891
  • 58 Bernasconi CF. Acc. Chem. Res. 1987; 20: 301
  • 59 Richard JP. Amyes TL. Williams KB. Pure Appl. Chem. 1998; 70: 2007
  • 60 Kresge AJ. Can. J. Chem. 1974; 52: 1897
  • 61 Jencks DA. Jencks WP. J. Am. Chem. Soc. 1977; 99: 7948
  • 62 Rios A. Crugeiras J. Amyes TL. Richard JP. J. Am. Chem. Soc. 2001; 123: 7949
  • 63 Crugeiras J. Rios A. Riveiros E. Amyes TL. Richard JP. J. Am. Chem. Soc. 2008; 130: 2041
  • 64 Toth K. Amyes TL. Richard JP. Malthouse JP. G. NíBeilliú ME. J. Am. Chem. Soc. 2004; 126: 10538
  • 65 Toth K. Richard JP. J. Am. Chem. Soc. 2007; 129: 3013
  • 66 Go MK. Richard JP. Bioorg. Chem. 2008; 36: 295
  • 67 Toth K. Gaskell LM. Richard JP. J. Org. Chem. 2006; 71: 7094
  • 68 Crugeiras J. Rios A. Amyes TL. Richard JP. Org. Biomol. Chem. 2005; 3: 2145
  • 69 Crugeiras J. Rios A. Riveiros E. Richard JP. J. Am. Chem. Soc. 2011; 133: 3173
  • 70 Crugeiras J. Rios A. Riveiros E. Richard JP. J. Am. Chem. Soc. 2009; 131: 15815
    • 71a Richard JP. Amyes TL. Crugeiras J. Rios A. Biochim. Biophys. Acta, Proteins Proteomics 2011; 1814: 1419
    • 71b Richard JP. Amyes TL. Crugeiras J. Rios A. Curr. Opin. Chem. Biol. 2009; 13: 475
    • 72a O’Donoghue AC. Amyes TL. Richard JP. Biochemistry 2005; 44: 2622
    • 72b O’Donoghue AC. Amyes TL. Richard JP. Biochemistry 2005; 44: 2610
  • 73 Amyes TL. Wood BM. Chan K. Gerlt JA. Richard JP. J. Am. Chem. Soc. 2008; 130: 1574
  • 74 Tsang W.-Y. Wood BM. Wong FM. Wu W. Gerlt JA. Amyes TL. Richard JP. J. Am. Chem. Soc. 2012; 134: 14580
  • 75 Goryanova B. Goldman LM. Amyes TL. Gerlt JA. Richard JP. Biochemistry 2013; 52: 7500
  • 76 Goryanova B. Amyes TL. Gerlt JA. Richard JP. J. Am. Chem. Soc. 2011; 133: 6545
  • 77 Radzicka A. Wolfenden R. Science 1995; 267: 90
  • 78 Zhang X. Houk KN. Acc. Chem. Res. 2005; 38: 379
  • 79 Stanton CL. Kuo IF. W. Mundy CJ. Laino T. Houk KN. J. Phys. Chem. B 2007; 111: 12573
  • 80 Pauling L. Nature 1948; 161: 707