Synlett 2017; 28(06): 640-653
DOI: 10.1055/s-0036-1588693
account
© Georg Thieme Verlag Stuttgart · New York

NHC–AuCl/Selectfluor: An Efficient Catalytic System for π-Bond Activation

Kai Chen
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. of China   Email: [email protected]
,
Shifa Zhu*
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 14 December 2016

Accepted after revision: 06 January 2017

Publication Date:
02 February 2017 (online)


Abstract

Gold complexes have emerged as one of the most efficient catalysts for electrophilic activation of π bonds toward a variety of nu­cleophiles. N-Heterocyclic carbenes (NHCs), commonly described as excellent σ donors, are becoming increasingly employed in gold catalysis. Selectfluor as external oxidant is able to oxidize Au(I) to Au(III) species, which plays a unique role in the NHC–AuCl/Selectfluor combination. This account describes our recent discovery and development of this efficient catalytic system, NHC–AuCl/Selectfluor, which can be used in cross-coupling reactions of alkenes and arylboronic acids, tandem Diels–Alder/Diels–Alder (DA/DA) reactions of enynals/enynones with alkenes, and carbene-transfer reactions. We believe this account not only should help the understanding of the Au(I)/Selectfluor catalytic system but also promote the development and application of other combinations of low-oxidation-state transition metal/Selectfluor or transition metal/oxidant as catalysts in organic synthesis.

1 Introduction

2 Discovery of the NHC–AuCl/Selectfluor Catalytic System

3 Development of NHC–AuCl/Selectfluor in Tandem DA/DA Reactions of Enynals/Enynones with Alkenes

3.1 Two-Component Three-Molecule Tandem DA/DA Reactions

3.2 Three-Component Three-Molecule Tandem DA/DA Reactions

3.3 Bioinspired Intramolecular DA/DA Reactions

3.4 Investigations of Reaction Mechanism

4. Development of NHC–AuCl/Selectfluor in Carbene-Transfer Reactions

5. Summary and Outlook

 
  • References

    • 1a Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
    • 1b Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
    • 1c Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
    • 1d Hashmi AS. K. Chem. Rev. 2007; 107: 3180
    • 2a Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 2b Carlos Lima J, Rodriguez L. Chem. Soc. Rev. 2011; 40: 5442
  • 3 Bratsh SG. J. Phys. Chem. Ref. Data 1989; 18: 1
    • 4a Hopkinson MN, Gee AD, Gouverneur V. Chem. Eur. J. 2011; 17: 8248
    • 4b Miró J, del Pozo C. Chem. Rev. 2016; 116: 11924
  • 5 Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
  • 6 Schuler M, Silva F, Bobbio C, Tessier A, Gouverneur V. Angew. Chem. Int. Ed. 2008; 47: 7927
    • 7a Hopkinson MN, Giuffredi GT, Gee AD, Gouverneur V. Synlett 2010; 2737
    • 7b de Haro T, Nevado C. Chem. Commun. 2011; 47: 248
  • 8 de Haro T, Nevado C. Adv. Synth. Catal. 2010; 352: 2767
  • 9 Wang W, Jasinski J, Hammond GB, Xu B. Angew. Chem. Int. Ed. 2010; 49: 7247
    • 10a Zhang G, Cui L, Wang Y, Zhang L. J. Am. Chem. Soc. 2010; 132: 1474
    • 10b Zhang G, Luo Y, Wang Y, Zhang L. Angew. Chem. Int. Ed. 2011; 50: 4450
    • 10c Zhang G, Peng Y, Cui L, Zhang L. Angew. Chem. Int. Ed. 2009; 48: 3112
    • 10d Cui L, Zhang G, Zhang L. Bioorg. Med. Chem. Lett. 2009; 19: 3884
    • 11a Melhado AD, Brenzovich WE, Lackner AD, Toste FD. J. Am. Chem. Soc. 2010; 132: 8885
    • 11b Brenzovich WE, Benitez D, Lackner AD, Shunatona HP, Tkatchouk E, Goddard WA, Toste FD. Angew. Chem. Int. Ed. 2010; 49: 5519
  • 12 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 13a Johnson MW, DiPasquale AG, Bergman RG, Toste FD. Organometallics 2014; 33: 4169
    • 13b Morita N, Krause N. Angew. Chem. Int. Ed. 2006; 45: 1897
    • 14a Marion N, Nolan SP. Chem. Soc. Rev. 2008; 37: 1776
    • 14b Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
    • 14c Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
    • 14d Herrmann WA, Köcher C. Angew. Chem. Int. Ed. 1997; 36: 2162
    • 15a Zhu S, Liang R, Jiang H. Tetrahedron 2012; 68: 7949
    • 15b Zhu S, Liang R, Chen L, Wang C, Ren Y, Jiang H. Tetrahedron Lett. 2012; 53: 815
  • 16 Zhu S, Ye L, Wu W, Jiang H. Tetrahedron 2013; 69: 10375
    • 17a Asao N, Nogami T, Lee S, Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 10921
    • 17b Xia Y, Qu S, Xiao Q, Wang Z.-X, Qu P, Chen L, Liu Z, Tian L, Huang Z, Zhang Y, Wang J. J. Am. Chem. Soc. 2013; 135: 13502
    • 17c Ma J, Zhang L, Zhu S. Curr. Org. Chem. 2016; 20: 102
    • 17d Liang R, Ma T, Zhu S. Org. Lett. 2014; 16: 4412
    • 17e Zhu S, Xiao Y, Guo Z, Jiang H. Org. Lett. 2013; 15: 898
    • 17f Liang R, Jiang H, Zhu S. Chem. Commun. 2015; 51: 5530
    • 17g Zhu S, Zhang Q, Chen K, Jiang H. Angew. Chem. Int. Ed. 2015; 54: 9414
    • 17h Ma J, Chen K, Fu H, Zhang L, Wu W, Jiang H, Zhu S. Org. Lett. 2016; 18: 1322
  • 18 Siva Kumari AL, Siva Reddy A, Swamy KC. K. Org. Biomol. Chem. 2016; 14: 6651
  • 19 Zhu S, Zhang Z, Huang X, Jiang H, Guo Z. Chem. Eur. J. 2013; 19: 4695
  • 20 Asao N, Kasahara T, Yamamoto Y. Angew. Chem. Int. Ed. 2003; 42: 3504
  • 21 Zhao X, Zhang X.-G, Tang R.-Y, Deng C.-L, Li J.-H. Eur. J. Org. Chem. 2010; 4211
  • 22 Zheng R, Zhu S. Chin. J. Org. Chem. 2014; 37: 1322
  • 23 Zhu S, Hu L, Jiang H. Org. Biomol. Chem. 2014; 12: 4104
  • 24 Zhu S, Huang H, Zhang Z, Ma T, Jiang H. J. Org. Chem. 2014; 79: 6113
  • 25 Zhu S, Huang X, Zhao T.-Q, Ma T, Jiang H. Org. Biomol. Chem. 2015; 13: 1225
    • 26a Bogle XS, Leber PA, McCullough LA, Powers DC. J. Org. Chem. 2005; 70: 8913
    • 26b Olbrich M, Mayer P, Trauner D. J. Org. Chem. 2015; 80: 2042
    • 26c Bah J, Franzén J. Chem. Eur. J. 2014; 20: 1066
    • 27a Tanino K, Takahashi M, Tomata Y, Tokura H, Uehara T, Narabu T, Miyashita M. Nat. Chem. 2011; 3: 484
    • 27b Watanabe K, Suzuki Y, Aoki K, Sakakura A, Suenaga K, Kigoshi H. J. Org. Chem. 2004; 69: 7802
    • 27c Tanino K, Onuki K, Asano K, Miyashita M, Nakamura T, Takahashi Y, Kuwajima I. J. Am. Chem. Soc. 2003; 125: 1498
    • 27d Corey EJ, Kang MC, Desai MC, Ghosh AK, Houpis IN. J. Am. Chem. Soc. 1988; 110: 649
    • 28a Donaldson WA. Tetrahedron 2001; 57: 8589
    • 28b Chen DY. K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
  • 29 Tseng C.-C, Ding H, Li A, Guan Y, Chen DY. K. Org. Lett. 2011; 13: 4410
  • 30 Zhu S, Guo Z, Huang Z, Jiang H. Chem. Eur. J. 2014; 20: 2425
  • 31 Zhang J, Xiao Y, Chen K, Wu W, Jiang H, Zhu S. Adv. Synth. Catal. 2016; 358: 2684
    • 32a Miki K, Washitake Y, Ohe K, Uemura S. Angew. Chem. Int. Ed. 2004; 43: 1857
    • 32b Gonzalez J, Lopez LA, Vicente R. Chem. Commun. 2014; 50: 8536
    • 32c Miki K, Nishino F, Ohe K, Uemura S. J. Am. Chem. Soc. 2002; 124: 5260
    • 32d Vicente R, González J, Riesgo L, González J, López LA. Angew. Chem. Int. Ed. 2012; 51: 8063
    • 32e Zhu D, Ma J, Luo K, Fu H, Zhang L, Zhu S. Angew. Chem. Int. Ed. 2016; 55: 8452
  • 33 Ma J, Jiang H, Zhu S. Org. Lett. 2014; 16: 4472
    • 34a Zhang J, Wang H, Ren S, Zhang W, Liu Y. Org. Lett. 2015; 17: 2920
    • 34b Zhang J, Wu D, Chen X, Liu Y, Xu Z. J. Org. Chem. 2014; 79: 4799
    • 34c Bao H, Xu Z, Wu D, Zhang H, Jin H, Liu Y. J. Org. Chem. 2017; 82: 109
    • 34d Zhang W, Zhang J, Liu Y, Xu Z. Synlett 2013; 24: 2709
    • 34e Ren SB, Zhang J, Zhang JH, Wang H, Zhang W, Liu YK, Liu MC. Eur. J. Org. Chem. 2015; 5381