Synthesis 2017; 49(04): 802-809
DOI: 10.1055/s-0036-1588662
short review
© Georg Thieme Verlag Stuttgart · New York

Perspectives on Intermolecular Azomethine Ylide [3+2] Cycloadditions with Non-Electrophilic Olefins

Jorge Otero-Fraga
Department of Organic Chemistry and Berzelii EXSELENT Center for Porous Materials Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden   Email: [email protected]
,
Marc Montesinos-Magraner
Department of Organic Chemistry and Berzelii EXSELENT Center for Porous Materials Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden   Email: [email protected]
,
Abraham Mendoza*
Department of Organic Chemistry and Berzelii EXSELENT Center for Porous Materials Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 26 September 2016

Accepted after revision: 02 November 2016

Publication Date:
15 December 2016 (online)


The authors contributed equally.

Dedicated to Prof. Paul Knochel.

Abstract

Our interest in the synthesis of compact nitrogen heterocycles from abundant sources has motivated a critical analysis of the status in azomethine ylide chemistry. Despite the outstanding developments in catalytic enantioselective [3+2] cycloadditions, these are still limited to electron-poor olefins. Only a few examples can be found in the literature that report on cycloadditions using non-electrophilic alkenes and those are compiled herein. With this account we aim to extract lessons and challenges that will inspire future breakthroughs in this area.

1 Introduction

2 State-of-the-Art Using Electron-Poor Olefins

3 Research on Activated Non-Electrophilic Olefins

3.1 Aromatic Olefins

3.2 Polyenes

3.3 Hetero-Substituted Olefins

3.4 Rare Examples with Alkyl-Substituted Olefins: Norbornadiene and Tethered α-Olefins

4 Extracted Generalities

4.1 Kinetic Barrier to Non-Electrophilic Olefins

4.2 Charge Concentration: An Unsolved Thermodynamic Penalty

5 Conclusions and Outlook

 
  • References

    • 1a Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 1b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 1c Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 1d Jurberg ID, Chatterjee I, Tannert R, Melchiorre P. Chem. Commun. 2013; 49: 4869
    • 1e Albrecht Ł, Jiang H, Jørgensen KA. Chem. Eur. J. 2014; 20: 358
    • 1f Meninno S, Lattanzi A. Chem. Commun. 2013; 49: 3821
    • 1g Buchner E. Ber. Dtsch. Chem. Ges. 1888; 21: 2637
    • 1h Palomo C, Mielgo A. Angew. Chem. Int. Ed. 2006; 45: 7876
    • 1i Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 1j Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 2a Cho BT. Chem. Soc. Rev. 2009; 38: 443
    • 2b Vargas-Caporali J, Juaristi E. Synthesis 2016; 48: 3890
    • 2c Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
  • 3 Chen MS, White MC. Science (Washington, D. C.) 2007; 318: 783
    • 4a Nájera C, Sansano JM. Angew. Chem. Int. Ed. 2005; 44: 6272
    • 4b Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 4c Adrio J, Carretero JC. Chem. Commun. 2011; 47: 6784
    • 4d Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
    • 4e Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res. 2014; 47: 1296
    • 4f Wang LJ, Tang Y In Comprehensive Organic Synthesis II . Knochel P, Molander GA. Elsevier; Amsterdam: 2014
    • 4g Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 5a Suárez-Pantiga S, Colas K, Johansson MJ, Mendoza A. Angew. Chem. Int. Ed. 2015; 54: 14094
    • 5b Mendoza A, Colas K, Suárez-Pantiga S, Götz DC. G, Johansson MJ. Synlett 2016; 27: 1753
    • 6a Filippone S, Maroto EE, Martín-Domenech A, Suarez M, Martín N. Nat. Chem. 2009; 1: 578
    • 6b Maroto EE, de Cózar A, Filippone S, Martín-Domenech Á, Suarez M, Cossío FP, Martín N. Angew. Chem. Int. Ed. 2011; 50: 6060
    • 6c Sawai K, Takano Y, Izquierdo M, Filippone S, Martin N, Slanina Z, Mizorogi N, Waelchli M, Tsuchiya T, Akasaka T, Nagase S. J. Am. Chem. Soc. 2011; 133: 17746
  • 7 Allway P, Grigg R. Tetrahedron Lett. 1991; 32: 5817
  • 8 Longmire JM, Wang B, Zhang X. J. Am. Chem. Soc. 2002; 124: 13400
  • 9 Gothelf AS, Gothelf KV, Hazell RG, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 4236
  • 10 Chen C, Li X, Schreiber SL. J. Am. Chem. Soc. 2003; 125: 10174
  • 11 Knöpfel TF, Aschwanden P, Ichikawa T, Watanabe T, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 5971
    • 12a Cabrera S, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2005; 127: 16394
    • 12b López-Pérez A, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 340
    • 12c Hernández-Toribio J, Padilla S, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2012; 51: 8854
  • 13 Zeng W, Zhou YG. Org. Lett. 2005; 7: 5055
  • 14 Yan XX, Peng Q, Zhang Y, Zhang K, Hong W, Hou XL, Wu YD. Angew. Chem. Int. Ed. 2006; 45: 1979
  • 15 Zeng W, Chen GY, Zhou YG, Li YX. J. Am. Chem. Soc. 2007; 129: 750
    • 16a Melhado AD, Luparia M, Toste FD. J. Am. Chem. Soc. 2007; 129: 12638
    • 16b Melhado AD, Amarante GW, Wang ZJ, Luparia M, Toste FD. J. Am. Chem. Soc. 2011; 133: 3517
    • 17a Saito S, Tsubogo T, Kobayashi S. J. Am. Chem. Soc. 2007; 129: 5364
    • 17b Yamashita Y, Guo XX, Takashita R, Kobayashi S. J. Am. Chem. Soc. 2010; 132: 3262
    • 17c Yamashita Y, Imaizumi T, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 4893
    • 18a Nájera C, Retamosa MdG, Sansano JM. Angew. Chem. Int. Ed. 2008; 47: 6055
    • 18b Martín-Rodríguez M, Nájera C, Sansano JM, Wu F.-L. Tetrahedron: Asymmetry 2010; 21: 1184
    • 18c Castelló LM, Nájera C, Sansano JM, Larrañaga O, de Cózar A, Cossío FP. Org. Lett. 2013; 15: 2902
    • 18d Nájera C, de Gracia Retamosa M, Sansano JM. Org. Lett. 2007; 9: 4025
    • 19a Wang CJ, Liang G, Xue ZY, Gao F. J. Am. Chem. Soc. 2008; 130: 17250
    • 19b Xue Z.-Y, Liu T.-L, Lu Z, Huang H, Tao H.-Y, Wang C.-J. Chem. Commun. 2010; 46: 1727
    • 19c Li Q.-H, Liu T.-L, Wei L, Zhou X, Tao H.-Y, Wang C.-J. Chem. Commun. 2013; 49: 9642
  • 20 Oura I, Shimizu K, Ogata K, Fukuzawa SI. Org. Lett. 2010; 12: 1752
  • 21 Arai T, Yokoyama N, Mishiro A, Sato H. Angew. Chem. Int. Ed. 2010; 49: 7895
  • 22 Zhang C, Yu SB, Hu XP, Wang DY, Zheng Z. Org. Lett. 2010; 12: 5542
    • 23a Antonchick AP, Gerding-Reimers C, Catarinella M, Schürmann M, Preut H, Ziegler S, Rauh D, Waldmann H. Nat. Chem. 2010; 2: 735
    • 23b Potowski M, Schürmann M, Preut H, Antonchick AP, Waldmann H. Nat. Chem. Biol. 2012; 8: 428
    • 23c Narayan R, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2013; 52: 12892
    • 23d Vidadala SR, Golz C, Strohmann C, Daniliuc CG, Waldmann H. Angew. Chem. Int. Ed. 2015; 54: 651
  • 24 Vicario JL, Reboredo S, Badía D, Carrillo L. Angew. Chem. Int. Ed. 2007; 46: 5168
    • 25a Chen XH, Zhang WQ, Gong LZ. J. Am. Chem. Soc. 2008; 130: 5652
    • 25b Chen XH, Wei Q, Luo SW, Xiao H, Gong LZ. J. Am. Chem. Soc. 2009; 131: 13819
    • 26a Liu YK, Liu H, Du W, Yue L, Chen YC. Chem. Eur. J. 2008; 14: 9873
    • 26b Sun W, Zhu G, Wu C, Li G, Hong L, Wang R. Angew. Chem. Int. Ed. 2013; 52: 8633
    • 27a Kauffmann T, Berg H, Köppelmann E. Angew. Chem., Int. Ed. Engl. 1970; 9: 380
    • 27b Kauffmann T. Angew. Chem., Int. Ed. Engl. 1974; 13: 627
  • 28 Pandiancherri S, Lupton DW. Tetrahedron Lett. 2011; 52: 671
  • 29 Kauffmann T, Habersaat K, Koeppelmann E. Chem. Ber. 1977; 110: 638
  • 30 Tsuge O, Kanemasa S, Hatada A, Matsuda K. Bull. Chem. Soc. Jpn. 1986; 59: 2537
    • 31a Pearson WH, Stevens EP. J. Org. Chem. 1998; 63: 9812
    • 31b Pearson WH, Szura DP, Postich MJ. J. Am. Chem. Soc. 1992; 114: 1329
    • 32a Pearson WH, Lian BW. Angew. Chem. Int. Ed. 1998; 37: 1724
    • 32b Pearson WH. Pure Appl. Chem. 2002; 74: 1339
    • 32c Pearson WH, Stoy P. Synlett 2003; 903
  • 33 Pearson WH, Stevens EP, Aponick A. Tetrahedron Lett. 2001; 42: 7361
    • 34a Kauffmann T, Eidenschink R. Angew. Chem., Int. Ed. Engl. 1971; 10: 739
    • 34b Kauffmann T, Eidenschink R. Chem. Ber. 1977; 110: 645
  • 35 Pearson WH, Mans DM, Kampf JW. J. Org. Chem. 2004; 69: 1235
    • 36a Bower DJ, Howden ME. H. J. Chem. Soc., Perkin Trans. 1 1980; 672
    • 36b Pearson WH, Mans DM, Kampf JW. Org. Lett. 2002; 4: 3099
  • 37 Popowski E. Z. Chem. 1974; 14: 360
    • 38a Kauffmann T, Ahlers H, Hamsen A, Schulz H, Tilhard HJ, Vahrenhorst A. Angew. Chem., Int. Ed. Engl. 1977; 16: 119
    • 38b Kauffmann T, Ahlers H, Echsler KJ, Schulz H, Tilhard HJ. Chem. Ber. 1985; 118: 4496
  • 39 Pearson WH, Mi Y, Lee IY, Stoy P. J. Am. Chem. Soc. 2001; 123: 6724
  • 40 Pearson WH, Walters MA, Oswell KD. J. Am. Chem. Soc. 1986; 108: 2769
  • 41 Kamata K, Terashima M. Heterocycles 1980; 14: 205
    • 42a Neumann F, Lambert C, Schleyer PvR. J. Am. Chem. Soc. 1998; 120: 3357
    • 42b Freeman F, Dang P, Huang AC, Mack A, Wald K. Tetrahedron Lett. 2005; 46: 1993
    • 42c Kuznetsov ML. Russ. Chem. Rev. 2006; 75: 935
  • 43 Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 44a Kauffmann T, Eidenschink R. Angew. Chem., Int. Ed. Engl. 1973; 12: 568
    • 44b Kauffmann T, Eidenschink R. Chem. Ber. 1977; 110: 651
    • 44c Kauffmann T, Busch A, Habersaat K, Koeppelmann E. Chem. Ber. 1983; 116: 492