Synthesis 2017; 49(06): 1273-1284
DOI: 10.1055/s-0036-1588642
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Salt-Promoted Carbocyclization Reactions of α-Bromo-N-arylacylamides

Che-Ping Chuang*
Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan   Email: cpchuang@mail.ncku.edu.tw
,
Ying-Yu Chen
Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan   Email: cpchuang@mail.ncku.edu.tw
,
Tsung-Han Chuang
Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan   Email: cpchuang@mail.ncku.edu.tw
,
Cheng-Hao Yang
Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan   Email: cpchuang@mail.ncku.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 05 September 2016

Accepted after revision: 11 October 2016

Publication Date:
07 November 2016 (online)


Abstract

A mild and convenient synthetic method for oxindoles and α-arylacylamides bearing an all carbon quaternary stereocenter from the readily available α-bromo-N-arylacylamides has been developed. This Cu(acac)2/Phen-promoted radical cyclization reaction, via the intramolecular radical cyclization onto the aryl moiety, can proceed in two different routes depending on the substituents on the nitrogen atom. In this transformation, oxindoles and α-arylacylamides were formed in high chemoselectivity. A variety of useful functional groups such as methoxy, fluoro, chloro, bromo, methoxycarbonyl, and cyano are compatible with the reaction conditions. The use of inexpensive, readily available Cu(acac)2 and Phen makes this protocol very efficient and practical.

Supporting Information

 
  • References

    • 1a Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 1b Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 1c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1d Millemaggi A, Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
    • 1e Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
    • 1f Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 1g Shen K, Liu X, Lin L, Feng X. Chem. Sci. 2012; 3: 327
    • 1h Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 1i Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 1j Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 2a Fensome A, Adams WR, Adams AL, Berrodin TJ, Cohen J, Huselton C, Illenberger A, Karen JC, Hudak MA, Marella AG, Melenski EG, McComas CC, Mugford CA, Slayeden OD, Yudt M, Zhang J, Zhang P, Zhu Y, Winneker RC, Wrobel JE. J. Med. Chem. 2008; 51: 1861
    • 2b Volk B, Barkoczy J, Hegedus E, Udvari S, Gacsalyi I, Mezei T, Pallagi K, Kompagne H, Levay G, Egyed A, Harsing LG, Spedding M, Simig G. J. Med. Chem. 2008; 51: 2522
    • 2c Christensen MK, Erichsen KD, Hansen C, Tjornelund J, Nielsen SJ, Frydenvang K, Johansen TN, Nielsen B, Sehested M, Jensen PB, Ikaunieks M, Zaichenko A, Loza E, Kalvinsh I, Bjorkling F. J. Med. Chem. 2010; 53: 7140
    • 2d Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B. J. Org. Chem. 1991; 56: 6527
    • 2e Anderton N, Cockrum AP, Colegate SM, Edgar JA, Flower K, Vit I, Willing RI. Phytochemistry 1998; 48: 437
    • 3a Matsuura T, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6500
    • 3b Dounay AB, Hatanaka K, Kodanko JJ, Oestreich M, Overman LE, Pfeifer LA, Weiss MM. J. Am. Chem. Soc. 2003; 125: 6261
    • 3c Pinto A, Jia Y.-X, Neuville L, Zhu J. Chem. Eur. J. 2007; 13: 961
    • 3d Jaegli S, Vors J.-P, Neuville L, Zhu J. Tetrahedron 2010; 66: 8911
    • 4a Shaughnessy KH, Hamann BC, Hartwig JF. J. Org. Chem. 1998; 63: 6546
    • 4b Marsden SP, Watson EL, Raw SA. Org. Lett. 2008; 10: 2905
    • 4c Hillgren JM, Marsden SP. J. Org. Chem. 2008; 73: 6459
    • 4d Lee S, Hartwig JF. J. Org. Chem. 2001; 66: 3402
    • 4e Glorius F, Altenhoff G, Goddard R, Lehmann C. Chem. Commun. 2002; 2704
    • 4f Arao T, Kondo K, Aoyama T. Tetrahedron Lett. 2006; 47: 1417
    • 4g Kündig EP, Seidel TM, Jia Y.-X, Bernardinelli G. Angew. Chem. Int. Ed. 2007; 46: 8484
    • 4h Jia Y.-X, Hillgren JM, Watson EL, Marsden SP, Kündig EP. Chem. Commun. 2008; 4040
    • 4i Ackermann L, Vicente R, Hofmann N. Org. Lett. 2009; 11: 4274
    • 4j Liu L, Ishida N, Ashida S, Murakami M. Org. Lett. 2011; 13: 1666
    • 4k Dey C, Katayev D, Ylijoki KE. O, Kündig EP. Chem. Commun. 2012; 48: 10957
    • 4l Beyer A, Buendia J, Bolm C. Org. Lett. 2012; 14: 3948
    • 5a Jia YX, Kündig EP. Angew. Chem. Int. Ed. 2009; 48: 1636
    • 5b Perry A, Taylor RJ. K. Chem. Commun. 2009; 3249
    • 5c Pugh DS, Klein JE. M. N, Perry A, Taylor RJ. K. Synlett 2010; 934
    • 5d Klein JE. M. N, Perry A, Pugh DS, Taylor RJ. K. Org. Lett. 2010; 12: 3446
    • 5e Moody CL, Franckevicius V, Drouhin P, Klein JE. M. N, Taylor RJ. K. Tetrahedron Lett. 2012; 53: 1897
    • 5f Pugh DS, Taylor RJ. K. Org. Synth. 2012; 89: 438
    • 5g Yu Z.-S, Ma L.-J, Yu W. Synlett 2010; 2607
    • 5h Ghosh S, De S, Kakde BN, Bhunia S, Adhikary A, Bisai A. Org. Lett. 2012; 14: 5864
    • 5i Bhunia S, Ghosh S, Dey DA, Bisai A. Org. Lett. 2013; 15: 2426
    • 5j Dey C, Kündig EP. Chem. Commun. 2012; 48: 3064
    • 6a Nishio T, Asai H, Miyazaki T. Helv. Chim. Acta 2000; 83: 1475
    • 6b Nishio T, Iseki K, Araki N, Miyazaki T. Helv. Chim. Acta 2005; 88: 35
    • 6c Murphy JA, Tripoli R, Khan TA, Mali UW. Org. Lett. 2005; 7: 3287
    • 6d Ju X, Liang Y, Jia P, Li W, Yu W. Org. Biomol. Chem. 2012; 10: 498
    • 6e Liu C, Liu D, Zhang W, Zhou W, Lei A. Org. Lett. 2013; 15: 6166
    • 6f Dong W, Liu Y, Hu B, Ren K, Li Y, Xie X, Jiang Y, Zhang Z. Chem. Commun. 2015; 51: 4587
    • 7a Khan TA, Tripoli R, Crawford JJ, Martin CG, Murphy JA. Org. Lett. 2003; 5: 2971
    • 7b Mondal B, Roy B. RSC Adv. 2015; 5: 69119
    • 7c Chen J.-Q, Wei Y.-L, Xu G.-Q, Liang Y.-M, Xu P.-F. Chem. Commun. 2016; 52: 6455
    • 8a Yang L, Lu W, Zhou W, Zhang F. Green Chem. 2016; 18: 2941
    • 8b Fan J.-H, Zhou M.-B, Liu Y, Wei W.-T, Ouyang X.-H, Song R.-J, Li J.-H. Synlett 2014; 25: 657
    • 8c Dai Q, Yu J, Jiang Y, Guo S, Yang H, Cheng J. Chem. Commun. 2014; 50: 3865
    • 8d Xu Z, Yan C, Liu Z.-Q. Org. Lett. 2014; 16: 5670
    • 8e Xie J, Xu P, Li H, Xue Q, Jin H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 5672
    • 8f Li Z, Zhang Y, Zhang L, Liu Z. Org. Lett. 2014; 16: 382
    • 8g Zhou M.-B, Wang C.-Y, Song R.-J, Liu Y, Wei W.-T, Li J.-H. Chem. Commun. 2013; 49: 10817
    • 8h Ouyang X.-H, Song R.-J, Li J.-H. Eur. J. Org. Chem. 2014; 3395
    • 8i Zhou Z.-Z, Hua H.-L, Luo J.-Y, Chen Z.-S, Zhou P.-X, Liu X.-Y, Liang Y.-M. Tetrahedron Lett. 2013; 54: 6337
    • 8j Jia F, Liu K, Xi H, Lu S, Li Z. Tetrahedron 2013; 69: 6099
    • 8k Zhang M.-Z, Ji P.-Y, Liu Y.-F, Guo C.-C. J. Org. Chem. 2015; 80: 10777
    • 8l Meng Y, Guo L.-N, Duan X.-H. Chem. Commun. 2013; 49: 7540
    • 8m Xia X.-F, Zhu S.-L, Zeng M, Gu Z, Wang H, Li W. Tetrahedron 2015; 71: 6099
    • 8n Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2013; 49: 10370
    • 8o Li X, Xu J, Gao Y, Fang H, Tang G, Zhao Y. J. Org. Chem. 2015; 80: 2621
    • 8p Lu M.-Z, Loh T.-P. Org. Lett. 2014; 16: 4698
    • 8q Ni Z, Huang X, Wang J, Pan Y. RSC Adv. 2016; 6: 552
    • 8r Pan C, Zhang H, Zhu C. Org. Biomol. Chem. 2015; 13: 361
    • 8s Li J, Wang Z, Wu N, Gao G, You J. Chem. Commun. 2014; 50: 15049
    • 9a Sebren LJ, Devery III JJ, Stephenson CR. J. ACS Catal. 2014; 4: 703
    • 9b Muñoz-Molina JM, Belderrain TR, Pérez PJ. Eur. J. Inorg. Chem. 2011; 3155
    • 9c Rowlands GJ. Tetrahedron 2010; 66: 1593
    • 9d Eckenhoff WT, Pintauer T. Catal. Rev. Sci. Eng. 2010; 52: 1
    • 9e Clark AJ. Chem. Soc. Rev. 2002; 31: 1
    • 10a Nishikata T, Ishikawa S. Synlett 2015; 26: 716
    • 10b Nishikata T, Nakamura K, Inoue Y, Ishikawa S. Chem. Commun. 2015; 51: 10154
    • 10c Zhang X, Yi H, Liao Z, Zhang G, Fan C, Qin C, Liu J, Lei A. Org. Biomol. Chem. 2014; 12: 6790
    • 10d Nishikata T, Nakamura K, Itonaga K, Ishikawa S. Org. Lett. 2014; 16: 5816
    • 10e Nishikata T, Noda Y, Fujimoto R, Sakashita T. J. Am. Chem. Soc. 2013; 135: 16372
    • 11a Liu Q, Yi H, Liu J, Yang Y, Zhang X, Zeng Z, Lei A. Chem. Eur. J. 2013; 19: 5120
    • 11b Liu C, Tang S, Liu D, Yang J, Zheng L, Meng L, Lei A. Angew. Chem. Int. Ed. 2012; 51: 3638
    • 11c Belhomme M.-C, Dru D, Xiong H.-Y, Cahard D, Besset T, Poisson T, Pannecoucke X. Synthesis 2014; 46: 1859
    • 12a Yan R.-L, Luo J, Wang C.-X, Ma C.-W, Huang G.-S, Liang Y.-M. J. Org. Chem. 2010; 75: 5395
    • 12b Zhao M.-N, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Chem. Eur. J. 2014; 20: 1839
    • 12c Liu P, Liu J, Wang H, Pan Y, Liang H, Chen Z.-F. Chem. Commun. 2014; 50: 4795
  • 13 Bernini R, Fabrizi G, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
    • 14a Cheung CW, Buchwald SL. J. Org. Chem. 2012; 77: 7526
    • 14b Xu Z, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 11367
    • 15a Neumann JJ, Suri M, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7790
    • 15b Li X, He L, Chen H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3636
    • 16a Toh KK, Sanjaya S, Sahnoun S, Chong SY, Chiba S. Org. Lett. 2012; 14: 2290
    • 16b Xia X.-F, Zhang L.-L, Song X.-R, Liu X.-Y, Liang Y.-M. Org. Lett. 2012; 14: 2480
    • 16c Yan R, Liu X, Pan C, Zhou X, Li X, Kang X, Huang G. Org. Lett. 2013; 15: 4876
    • 16d Meyet CE, Larsen CH. J. Org. Chem. 2014; 79: 9835
    • 18a Wu Y.-L, Chuang C.-P, Lin P.-Y. Tetrahedron 2000; 56: 6209
    • 18b Chuang C.-P, Tsai A.-I, Tsai M.-Y. Tetrahedron 2013; 69: 3293
    • 18c Tsai P.-J, Kao C.-B, Chiow W.-R, Chuang C.-P. Synthesis 2014; 46: 175
    • 18d Lin G.-A, Chuang C.-P. Tetrahedron 2015; 71: 4795
    • 18e Chen Y.-J, Chuang C.-P. Tetrahedron 2016; 72: 1911
    • 19a Jiang M.-C, Chuang C.-P. J. Org. Chem. 2000; 65: 5409
    • 19b Wu Y.-L, Chuang C.-P, Lin P.-Y. Tetrahedron 2001; 57: 5543
    • 19c Tseng C.-C, Wu Y.-L, Chuang C.-P. Tetrahedron 2002; 58: 7625
    • 20a Chuang C.-P, Wu Y.-L. Tetrahedron 2004; 60: 1841
    • 20b Tsai A.-I, Chuang C.-P. Tetrahedron 2006; 62: 2235
    • 21a Lin Z.-Y, Chen Y.-L, Lee C.-S, Chuang C.-P. Eur. J. Org. Chem. 2010; 3876
    • 21b Chen K-P, Chen Y.-J, Chuang C.-P. Eur. J. Org. Chem. 2010; 5292
    • 22a Chan C.-W, Lee P.-Y, Yu W.-Y. Tetrahedron Lett. 2015; 56: 2559
    • 22b Liu J, Zhuang S, Gui Q, Chen X, Yang Z, Tan Z. Eur. J. Org. Chem. 2014; 3196
    • 22c Yang F, Klumphu P, Liang YM, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 22d Fu W, Xu F, Fu Y, Xu C, Li S, Zou D. Eur. J. Org. Chem. 2014; 709
    • 22e Wei W, Wen J, Yang D, Liu X, Guo M, Dong R, Wang H. J. Org. Chem. 2014; 79: 4225
    • 23a Gonzalez-Lopez de Turiso F, Curran DP. Org. Lett. 2005; 7: 151
    • 23b Ibarra-Rivera TR, Gámez-Montaño R, Miranda LD. Chem. Commun. 2007; 3485
    • 23c Tsubusaki T, Nishino H. Tetrahedron 2009; 65: 9448
    • 23d Lanza T, Leardini R, Minozzi M, Nanni D, Spagnolo P, Zanardi G. Angew. Chem. Int. Ed. 2008; 47: 9439
  • 24 An analoguous reaction using Ni(PPh3)4 as catalyst for the construction of oxindoles has been reported. The use of air-sensitive, not readily available Ni(PPh3)4 is the major drawback for this approach. See also ref. 6e.
  • 25 Storr T, Verma P, Pratt RC, Wasinger EC, Shimazaki Y, Stack TD. P. J. Am. Chem. Soc. 2008; 130: 15448
    • 26a Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 26b Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 26c Zhang H, Pan C, Jin N, Gu Z, Hu H, Zhu C. Chem. Commun. 2015; 51: 1320
    • 26d Xia XF, Zhu SL, Chen C, Wang H, Liang YM. J. Org. Chem. 2016; 81: 1277
    • 26e Fan JH, Yang J, Song RJ, Li JH. Org. Lett. 2015; 17: 836
    • 26f He Z, Tan P, Ni C, Hu J. Org. Lett. 2015; 17: 1838
    • 26g Liu C, Zhang B. RSC Adv. 2015; 5: 61199
    • 26h Ni Z, Huang X, Pan Y. Org. Lett. 2016; 18: 2612