Synlett 2016; 27(19): 2659-2675
DOI: 10.1055/s-0036-1588631
account
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Promoted and Photoredox-Catalyzed Radical Addition to Triple Bonds

Xiaoyang Sun
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: yushouyun@nju.edu.cn
,
Shouyun Yu*
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: yushouyun@nju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 01 September 2016

Accepted after revision: 29 September 2016

Publication Date:
27 October 2016 (online)


Abstract

This account details a series of visible-light-promoted and photoredox-catalyzed radical additions to triple bonds, including those of isocyanides, alkynes, cyanides and carbon monoxide. 6-Substituted phenanthridines, 1-substituted isoquinolines and ortho-substituted pyridine derivatives are synthesized via radical addition to isocyanides. A number of (hetero)aromatic compounds are prepared by the addition of radicals to alkynes. Carbonyl compounds can be easily obtained by radical addition to carbon monoxide. Tetracyclic quinazolinones are constructed by radical addition to cyanides. Furthermore, a wide range of quinoline and quinoxaline derivatives are synthesized by way of domino radical isocyanide/alkyne insertions and isocyanide/cyanide insertions, respectively. All the reactions can be carried out in high yields under mild conditions.

1 Introduction

2 Synthesis of Six-Membered Heteroaromatic Rings by Radical Addition to Isocyanides

2.1 Synthesis of 6-Substituted Phenanthridines

2.2 Synthesis of 1-Substituted Isoquinolines

2.3 Synthesis of ortho-Substituted Pyridines

3 Synthesis of (Hetero)aromatic Compounds by Radical Addition to Alkynes

3.1 Synthesis of Six-Membered (Hetero)aromatic Compounds

3.2 Synthesis of Five-Membered (Hetero)aromatic Compounds

4 Synthesis of Carbonyl Compounds by Radical Addition to Carbon Monoxide

5 Synthesis of Tetracyclic Quinazolinones by Radical Addition to Cyanides

6 Synthesis of Quinolines by Domino Radical Isocyanide/Alkyne Insertions

7 Synthesis of Quinoxalines by Domino Radical Isocyanide/Cyanide Insertions

8 Conclusions and Outlook

 
  • References

    • 1a Albert M, Fensterbank L, Lacôte E, Malacria M In Radicals in Synthesis II . Gansäuer A. Springer; Berlin: 2006: 1
    • 1b Giese B. Radicals in Organic Syntheses: Formation of Carbon-Carbon Bonds. Pergamon; Oxford: 1986
    • 1c Curran DP In Comprehensive Organic Synthesis . Vol. 4. Trost BM, Fleming I, Semmelhack MF. Pergamon; Oxford: 1991
    • 1d Sibi M, Renaud P. Radicals in Organic Synthesis . Vol. 1–2. Wiley; Weinheim: 2001
    • 1e Baralle A, Baroudi A, Daniel M, Fensterbank L, Goddard J.-P, Lacote E, Larraufie M.-H, Maestri G, Malacria M, Ollivier C. Radical Cascade Reactions . In Encyclopedia of Radicals in Chemistry, Biology and Materials . Chatgilialoglu C, Studer A. John Wiley and Sons; Chichester: 2012

      For some reviews on alkynes as radical acceptors, see:
    • 2a Brace NO. J. Fluorine Chem. 1999; 93: 1
    • 2b Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
    • 2c Wille U. Chem. Rev. 2013; 113: 813
    • 2d Besset T, Poisson T, Pannecoucke X. Eur. J. Org. Chem. 2015; 2765
    • 2e Fang G, Bi X. Chem. Soc. Rev. 2015; 44: 8124
    • 2f Gao P, Song X.-R, Liu X.-Y, Liang Y.-M. Chem. Eur. J. 2015; 21: 7648

      For some reviews on isocyanides as radical acceptors, see:
    • 3a Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 3b Wang H, Xu B. Youji Huaxue 2015; 35: 588
    • 3c Lei J, Huang J, Zhu Q. Org. Biomol. Chem. 2016; 14: 2593
    • 3d Sun X, Yu S. Youji Huaxue 2016; 36: 239

      For some examples of cyanides as radical acceptors, see:
    • 4a Nanni D, Pareschi P, Rizzoli C, Sgarabotto P, Tundo A. Tetrahedron 1995; 51: 9045
    • 4b Curran DP, Liu H, Josien H, Ko S.-B. Tetrahedron 1996; 52: 11385
    • 4c Camaggi CM, Leardini R, Nanni D, Zanardi G. Tetrahedron 1998; 54: 5587
    • 4d Benati L, Bencivenni G, Leardini R, Minozzi M, Nanni D, Scialpi R, Spagnolo P, Zanardi G, Rizzoli C. Org. Lett. 2004; 6: 417
    • 4e Fernández-Mateos A, Teijón PH, Clemente RR, González RR, González FS. Synlett 2007; 2718
    • 4f Servais A, Azzouz M, Lopes D, Courillon C, Malacria M. Angew. Chem. Int. Ed. 2007; 46: 576
    • 4g Beaume A, Courillon C, Derat E, Malacria M. Chem. Eur. J. 2008; 14: 1238
    • 4h Larraufie M.-H, Ollivier C, Fensterbank L, Malacria M, Lacôte E. Angew. Chem. Int. Ed. 2010; 49: 2178
    • 4i Vervisch K, D’Hooghe M, Tornroos KW, De Kimpe N. Org. Biomol. Chem. 2012; 10: 3308

      For some reviews on carbon monoxide as a radical acceptor, see ref. 6a. For some examples of carbon monoxide as a radical acceptor, see:
    • 5a Ryu I, Kusano K, Yamazaki H, Sonoda N. J. Org. Chem. 1991; 56: 5003
    • 5b Ryu I, Yamazaki H, Kusano K, Ogawa A, Sonoda N. J. Am. Chem. Soc. 1991; 113: 8558
    • 5c Nagahara K, Ryu I, Kambe N, Komatsu M, Sonoda N. J. Org. Chem. 1995; 60: 7384
    • 5d Brinza IM, Fallis AG. J. Org. Chem. 1996; 61: 3580
    • 5e Nagahara K, Ryu I, Komatsu M, Sonoda N. J. Am. Chem. Soc. 1997; 119: 5465
    • 5f Yamago S, Miyazoe H, Goto R, Hashidume M, Sawazaki T, Yoshida J.-i. J. Am. Chem. Soc. 2001; 123: 3697
    • 5g Sumino Y, Harato N, Tomisaka Y, Ogawa A. Tetrahedron 2003; 59: 10499
    • 5h Ueda M, Uenoyama Y, Terasoma N, Doi S, Kobayashi S, Ryu I, Murphy JA. Beilstein J. Org. Chem. 2013; 9: 1340
    • 5i Gu L, Jin C, Liu J. Green Chem. 2015; 17: 3733
    • 5j Guo W, Lu L.-Q, Wang Y, Wang Y.-N, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 2265
    • 5k Majek M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 2270
    • 5l Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196

      For some reviews on multicomponent isocyanide insertions, see:
    • 6a Ryu I, Sonoda N, Curran DP. Chem. Rev. 1996; 96: 177
    • 6b Dömling A. Curr. Opin. Chem. Biol. 2002; 6: 306
    • 6c Dömling A. Chem. Rev. 2006; 106: 17
    • 6d Banfi L, Riva R, Basso A. Synlett 2010; 23
    • 6e van Berkel SS, Bögels BG. M, Wijdeven MA, Westermann B, Rutjes FP. J. T. Eur. J. Org. Chem. 2012; 3543
    • 6f Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 6g Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 6h Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 6i Koopmanschap G, Ruijter E, Orru RV. A. Beilstein J. Org. Chem. 2014; 10: 544
    • 7a Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 7b Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 7c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 7d Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 7e Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 7f Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 7g Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 7h Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 7i Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 7j Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 8 Lygin AV, de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
    • 9a Jiang H, Cheng Y, Wang R, Zheng M, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2013; 52: 13289
    • 9b Sun X, Yu S. Org. Lett. 2014; 16: 2938
    • 9c Wang S, Jia W.-L, Wang L, Liu Q. Eur. J. Org. Chem. 2015; 6817
    • 9d Zhu M, Fu W, Zou G, Xu C, Wang Z. J. Fluorine Chem. 2015; 180: 1
    • 10a Cheng Y, Yuan X, Jiang H, Wang R, Ma J, Zhang Y, Yu S. Adv. Synth. Catal. 2014; 356: 2859
    • 10b Wang R, Jiang H, Cheng Y, Kadi AA, Fun H.-K, Zhang Y, Yu S. Synthesis 2014; 46: 2711
    • 10c Tong K, Zheng T, Zhang Y, Yu S. Adv. Synth. Catal. 2015; 357: 3681
    • 11a He Z, Bae M, Wu J, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 14451
    • 11b Jiang H, Cheng Y, Wang R, Zhang Y, Yu S. Chem. Commun. 2014; 50: 6164
  • 12 Gu L, Jin C, Liu J, Ding H, Fan B. Chem. Commun. 2014; 50: 4643
  • 13 Xiao T, Li L, Lin G, Wang Q, Zhang P, Mao Z.-w, Zhou L. Green Chem. 2014; 16: 2418
    • 14a Eisch J, Gilman H. Chem. Rev. 1957; 57: 525
    • 14b Phillips SD, Castle RN. J. Heterocycl. Chem. 1981; 18: 223
    • 14c Ishikawa T, Ishii H. Heterocycles 1999; 50: 627
    • 14d Harayama T. Heterocycles 2005; 65: 697
    • 15a Park BK, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 443
    • 15b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 16a Bergstrom FW. Chem. Rev. 1944; 35: 77
    • 16b Rozwadowska MD. Heterocycles 1994; 39: 903
    • 16c Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
    • 16d Bentley KW. Nat. Prod. Rep. 2006; 23: 444
    • 16e Fumihiko S, Takayuki I, Tomoya T. Curr. Pharm. Biotechnol. 2007; 8: 211
    • 17a Ciha AJ, Ruminski PG. J. Agric. Food Chem. 1991; 39: 2072
    • 17b Kennedy JP, Conn PJ, Lindsley CW. Bioorg. Med. Chem. Lett. 2009; 19: 3204
    • 17c Pinard E, Alberati D, Bender M, Borroni E, Brom V, Burner S, Fischer H, Hainzl D, Halm R, Hauser N, Jolidon S, Lengyel J, Marty H.-P, Meyer T, Moreau J.-L, Mory R, Narquizian R, Norcross RD, Schmid P, Wermuth R, Zimmerli D. Bioorg. Med. Chem. Lett. 2010; 20: 6960
    • 17d Parra J, Esteve-Turrillas FA, Abad-Somovilla A, Agulló C, Mercader JV, Abad-Fuentes A. Anal. Biochem. 2011; 416: 82
    • 17e O’Hara F, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2013; 135: 12122
    • 18a Tucker JW, Nguyen JD, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Chem. Commun. 2010; 46: 4985
    • 18b Tucker JW, Stephenson CR. J. Org. Lett. 2011; 13: 5468
    • 18c Choi S, Kim YJ, Kim SM, Yang JW, Kim SW, Cho EJ. Nat. Commun. 2014; 5: 4881
    • 18d Iqbal N, Jung J, Park S, Cho EJ. Angew. Chem. Int. Ed. 2014; 53: 539
    • 18e Tomita R, Koike T, Akita M. Angew. Chem. Int. Ed. 2015; 54: 12923
    • 18f Bu M.-j, Lu G.-p, Cai C. Catal. Sci. Technol. 2016; 6: 413
    • 18g Huang L, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 4808
    • 18h Tlahuext-Aca A, Hopkinson MN, Garza-Sanchez RA, Glorius F. Chem. Eur. J. 2016; 22: 5909
  • 19 Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal. 2012; 354: 3195
  • 20 Chatterjee T, Choi MG, Kim J, Chang S.-K, Cho EJ. Chem. Commun. 2016; 52: 4203
  • 21 Jiang H, Cheng Y, Zhang Y, Yu S. Org. Lett. 2013; 15: 4884
  • 22 Yuan Z.-G, Wang Q, Zheng A, Zhang K, Lu L.-Q, Tang Z, Xiao W.-J. Chem. Commun. 2016; 52: 5128
  • 23 Fu W, Zhu M, Zou G, Xu C, Wang Z, Ji B. J. Org. Chem. 2015; 80: 4766
  • 24 Wang H, Yu S. Org. Lett. 2015; 17: 4272
  • 25 Xiao T, Li L, Xie Y, Mao Z.-W, Zhou L. Org. Lett. 2016; 18: 1004
  • 26 Xia J.-D, Deng G.-B, Zhou M.-B, Liu W, Xie P, Li J.-H. Synlett 2012; 23: 2707
  • 27 Deng G.-B, Wang Z.-Q, Xia J.-D, Qian P.-C, Song R.-J, Hu M, Gong L.-B, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 1535
  • 28 Hari DP, Hering T, König B. Org. Lett. 2012; 14: 5334
  • 29 Zhou H, Deng X, Ma Z, Zhang A, Qin Q, Tan RX, Yu S. Org. Biomol. Chem. 2016; 14: 6065
  • 30 Zhang P, Xiao T, Xiong S, Dong X, Zhou L. Org. Lett. 2014; 16: 3264
  • 31 Xuan J, Xia X.-D, Zeng T.-T, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 5653
  • 32 Quint V, Morlet-Savary F, Lohier J.-F, Lalevée J, Gaumont A.-C, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
  • 33 Han Y.-Y, Jiang H, Wang R, Yu S. J. Org. Chem. 2016; 81: 7276
  • 34 Sun X, Li J, Ni Y, Ren D, Hu Z, Yu S. Asian J. Org. Chem. 2014; 3: 1317