Synlett 2017; 28(01): 78-83
DOI: 10.1055/s-0036-1588626
cluster
© Georg Thieme Verlag Stuttgart · New York

Selective Acylation of Nucleosides, Nucleotides, and Glycerol-3-phosphocholine in Water

Christian Fernández-García, Matthew W. Powner*
Further Information

Publication History

Received: 03 August 2016

Accepted after revision: 20 September 2016

Publication Date:
11 October 2016 (eFirst)

Abstract

A convenient selective synthesis of 2′,3′-di-O-acetyl-nucleotide-5′-phosphates, 2′,3′-di-O-acetyl-nucleotide-5′-triphosphates and 2′,3′,5′-tri-O-acetyl-nucleosides in water has been developed. Furthermore, a long-chain selective glycerol-3-phosphocholine diacylation is elucidated. These reactions are environmentally benign, rapid, high yielding, and the products are readily purified. Importantly, this reaction may indicate a prebiotically plausible reaction pathway for the selective acylation of key metabolites to facilitate their incorporation into protometabolism.

Supporting Information

 
  • References and Notes

    • 1a Whitesides GM. Angew. Chem. Int. Ed. 2015; 54: 3196
    • 1b Ruiz-Mirazo K, Briones C, de la Escosura A. Chem. Rev. 2014; 114: 285
    • 1c Powner MW, Sutherland JD, Szostak JW. Synlett 2011; 14: 1956
    • 1d Anastasi C, Buchet FF, Crowe MA, Parkes AL, Powner MW, Smith JM, Sutherland JD. Chem. Biodiversity 2007; 4: 721
    • 1e Eschenmoser A, Loewenthal E. Chem. Soc. Rev. 1992; 21: 1
    • 2a Sleep NH. Cold Spring Harb. Perspect. Biol. 2010; 2: a002527
    • 2b Woese CR. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 8742
  • 3 Szostak JW, Bartel DP, Luisi PL. Nature (London, U.K.) 2001; 409: 387
  • 4 Eschenmoser A. Chem. Biodiversity 2007; 4: 554
    • 6a Bartoli G, Dalpozzo R, De Nino A, Maiuolo L, Nardi M, Procopio A, Tagarelli A. Green Chem. 2004; 6: 191
    • 6b Orita A, Tanahashi C, Kakuda A, Otera J. Angew. Chem. Int. Ed. 2000; 39: 2877
    • 6c Alleti R, Perambuduru M, Samantha S, Reddy VP. J. Mol. Catal. A: Chem. 2005; 226: 57
    • 6d Tai C.-A, Kulkarni SS, Hung S.-C. J. Org. Chem. 2003; 68: 8719
    • 6e Ishihara K, Kubota M, Kurihara H, Yamamoto H. J. Am. Chem. Soc. 1995; 117: 4413
    • 6f Sá M, Meier L. Synlett 2006; 3474
    • 6g Mihara M, Nakai T, Iwai T, Ito T, Ohno T, Mizuno T. Synlett 2010; 253
    • 6h Phukan P. Tetrahedron Lett. 2004; 45: 4785
    • 6i Jeyakumar K, Chand DK. J. Mol. Catal. A: Chem. 2006; 255: 275
    • 6j Hosseini Sarvari M, Sharghi H. Tetrahedron 2005; 61: 10903
    • 6k Chakraborti AK, Gulhane R. Tetrahedron Lett. 2003; 44: 6749
    • 6l Paul S, Nanda P, Gupta R, Loupy A. Tetrahedron Lett. 2002; 43: 4261
    • 7a Buskas T, Garegg PJ, Konradsson P, Maloisel JL. Tetrahedron: Asymmetry. 1994; 5: 2187
    • 7b Focher B, Beltrame PL, Naggi A, Torri G. Carbohydr. Polym. 1990; 12: 405
    • 7c Wolfrom ML, Juliano BO. J. Am. Chem. Soc. 1960; 82: 2588
    • 7d Domard A, Rinaudo M. Int. J. Biol. Macromol. 1983; 5: 49
    • 7e Nilsson B, Svensson S. Carbohydr. Res. 1978; 62: 377
    • 7f Erbing C, Granath K, Kenne L, Lindberg B. Carbohydr. Res. 1976; 47: C5
    • 7g Rajanarayanan A, Jeyaraman R. Tetrahedron Lett. 1991; 32: 3873
    • 8a Sultane PR, Mete TB, Bhat RG. Org. Biomol. Chem. 2014; 12: 261
    • 8b Ferrari V, Serpi M, McGuigan C, Pertusati F. Nucleosides, Nucleotides Nucleic Acids 2015; 34: 799
  • 9 Nowak I, Conda-Sheridan M, Robins MJ. J. Org. Chem. 2005; 70: 7455
  • 10 Marian M. Microchem. J. 1984; 29: 219
    • 11a Donga RA, Hassler M, Chan T.-H, Damha MJ. Nucleosides, Nucleotides Nucleic Acids 2007; 26: 1287
    • 11b Donga RA, Khaliq-Uz-Zaman SM, Chan T.-H, Damha MJ. J. Org. Chem. 2006; 71: 7907
  • 12 Nicholas SD, Smith F. Nature (London, U.K.) 1948; 161: 349
  • 13 Lehninger AL, Nelson DL, Cox MM. Lehninger Principles of Biochemistry . 6th ed. W. H. Freeman; New York; 2013
  • 14 Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Nat. Rev. Endocrinol. 2015; 12: 43
  • 15 Arnesen T. PLoS Biol. 2011; 9: e1001074
    • 16a Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Science 2009; 325: 834
    • 16b Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. Nat. Rev. Mol. Cell Biol. 2014; 15: 536
    • 16c Dancy BM, Cole PA. Chem. Rev. 2015; 115: 2419
  • 17 Bowler FR, Chan CK. W, Duffy CD, Gerland B, Islam S, Powner MW, Sutherland JD, Xu J. Nat. Chem. 2013; 5: 383
  • 18 Biron J.-P, Parkes AL, Pascal R, Sutherland JD. Angew. Chem. Int. Ed. 2005; 44: 6731
  • 19 Lu Y, Wei P, Pei Y, Xu H, Xin X, Pei Z. Green Chem. 2014; 16: 4510
    • 20a Rosenthal D, Taylor TI. J. Am. Chem. Soc. 1957; 79: 2684
    • 20b Butler EA, Peters DG, Swift EH. Anal. Chem. 1958; 30: 1379
    • 20c Cefola M, Peter SS, Gentile PS, Gentile PS, Celiano RA. V. Talanta 1962; 9: 537
    • 20d de Duve C. Blueprint for a Cell: The Nature and Origin of Life. Neil Patterson Publishers; Burlington; 1991
  • 21 Alongside the cytidine products precipitation of (2Z,2′Z)-3,3′-thiodiacrylonitrile (12) was observed (Figure 2).17
  • 22 Liu R, Orgel L. E. Nature (London U.K.) 1997; 389: 52
  • 23 Pyrophosphate 8 (Figure 3).
  • 24 Jencks WP, Carriuolo J. J. Biol. Chem. 1959; 234: 1272
  • 25 General Nucleoside Acetylation Protocol Nucleoside/nucleotide (2; 100 mM) and N-acetyl imidazole (1a; 10 equiv) were dissolved in water (pH 8; adjusted with 4 M NaOH). The solution was incubated at r.t. for 4 h, and NMR spectra were periodically acquired. The product was purified by reverse-phase (C18) flash coumn chromatography (eluted at pH 4 with 100 mM NH4HCO2/MeCN = 98:2 to 80:20). The fractions containing 5 were lyophilised to yield a white powder. Selected Data: 2′,3′-Di-O-acetyl-β-cytidine-5′-phosphate (5a) Starting from 1a (160 mg, 0.50 mmol), 5a (172 mg, 85%) was obtained as a white powder. 1H NMR (600 MHz, D2O): δ = 8.08 [d, J = 7.9 Hz, 1 H, H-(C6)], 6.22 [d, J = 7.9 Hz, 1 H, H-(C5)], 6.11 [d, J = 5.1 Hz, 1 H, H-(C1′)], 5.41 [dd, J = 5.4, 5.1 Hz, 1 H, H-(C2′)], 5.38 [dd, J = 5.4, 4.4 Hz, 1 H, H-(C3′)], 4.48 [ddd, J = 4.9, 4.4, 2.4 Hz, 1 H, H-(C4′)], 4.13 [ABXY, J = 11.9, 4.4, 2.4 Hz, 1 H, H-(C5′)], 4.02 [ABXY, J = 11.9, 4.9, 2.4 Hz, 1 H, H-(C5′′)], 2.09 [s, 3 H, Ac-(C3′)], 2.05 [s, 3 H, Ac-(C2′)]. 13C NMR (151 MHz, D2O): δ = 173.4 (3′-OAc), 173.1 (2′-OAc), 160.7 (C4), 150.1 (C2), 144.3 (C6), 96.5 (C5), 88.2 (C1′), 82.5 (d, C4′), 74.5 (C2′), 71.5 (C3′), 64.4 (d, C5′), 20.6 (3′-OAc), 20.5 (2′-OAc). 31P NMR (162 MHz, D2O, 1H-decoupled): δ = 0.30. IR (neat): 1746, 1660, 1489, 1462, 1429, 1375, 1075 cm–1. ESI-HRMS: m/z [M + H+] calcd for C13H19N3O10P: 408.0803; found: 408.0810.
  • 26 Khorana HG, Vizsolyi JP. J. Am. Chem. Soc. 1965; 81: 4660
  • 27 Brinigar WS, Knaff DB. Biochemistry 1965; 4: 406
  • 28 McGinnis JL, Dunkle JA, Cate JH. D, Weeks KM. J. Am. Chem. Soc. 2012; 134: 6617
    • 29a Powner MW, Sutherland JD. Phil. Trans. R. Soc. B 2011; 366: 2870
    • 29b Powner MW, Gerland B, Sutherland JD. Nature (London, U.K.) 2009; 459: 239
    • 29c Powner MW, Sutherland JD, Szostak JW. J. Am. Chem. Soc. 2010; 132: 16677
    • 29d Powner MW, Zheng SL, Szostak JW. J. Am. Chem. Soc. 2012; 134: 13889
    • 29e Coggins AJ, Tocher DA, Powner MW. Org. Biomol. Chem. 2015; 13: 3378
    • 30a Hargreaves WR, Mulvihill SJ, Deamer DW. Nature (London, U.K.) 1977; 266: 78
    • 30b Oro J. J. Biol. Phys. 1995; 20: 135
    • 31a Hargreaves WR, Deamer DW. Biochemistry 1978; 17: 3759
    • 31b Hanczyc MM, Fujikawa SM, Szostak JW. Science. 2003; 302: 618
  • 32 Budin I, Szostak JW. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 5249
  • 33 Walde P. Origins Life Evol. Biospheres 2006; 36: 109
    • 34a Monnard PA, Apel CL, Kanavarioti A, Deamer DW. Astrobiology 2002; 2: 139
    • 34b Szostak JW. J. Syst. Chem. 2012; 3: 2

      Fischer–Tropps-type (FT) synthesis furnishes straight chain hydrocarbons, alkanols, and carboxylic acids,35a and nickel sulfide in a carbon monoxide atmosphere, could yield FT-thioacids on the early earth.35b,c
    • 35a Anderson RB, Kölbel H, Ralek M. The Fischer–Tropsch Synthesis . Anderson RB. Academic Press; Orlando, FL; 1984
    • 35b Huber C, Wächtershäuser G. Science 1997; 276: 245
    • 35c Loison A, Dubant S, Adam P, Albrecht P. Astrobiology 2010; 10: 973
  • 36 Veinot JG. C, Ginzburg M, Pietro WJ. Chem. Mater. 1997; 9: 2117
  • 37 Example Procedure for Glycerol-3-phosphocholine Acylation (11d) Glycerol 10 (130 mg, 100 mM) and N-octanoyl imidazole (1d; 10 equiv) were suspended in H2O–MeCN (4:1). The resulting biphasic solution was stirred vigorously for 4 h and lyophilised. The residue was purified by SiO2 flash coumn chromatography (CH2Cl2–MeOH = 90:10 to 40:60 and then CH2Cl2–MeOH–H2O (10%) = 40:54:6 to 10:81:9). The fractions containing 11d were concentrated in vacuo and purified by reverse-phase (C18) flash column chromatography (H2O–MeOH = 9:1 to 0:10). The fractions containing 11d were lyophilised to yield 173 mg (67%) of 1,2-di-O-octanoyl-sn-glycero-3-phosphocholine (11d) as a white powder. 1H NMR (600 MHz, CD3OD): δ = 5.09–5.16 [m, 1 H, H-(C2)], 4.32 [dd, J = 12.0, 3.3 Hz, 1 H, H-(C1)], 4.12–4.22 [m, 2 H, H-(C1′)], 4.07 [dd, J = 12.0, 6.8 Hz, 1 H, H-(C1)], 3.86–3.93 [m, 2 H, H-(C3)], 3.49–3.57 [m, 2 H, H-(C2′)], 3.12 [s, 9 H, N(CH3)3], 2.18–2.27 (m, 4 H, COCH2), 1.44–1.56 (m, 4 H, CH2), 1.15–1.28 [m, 16 H, (CH2)4], 0.76–0.84 (m, 6 H, CH2CH 3). 13C NMR (151 MHz, CD3OD): δ = 175.1 (COCH2), 174.8 (COCH2), 72.0 (C2), 67.6 (C2′), 65.0 (C3), 63.8 (C1), 60.6 (C1′), 54.8 [N(CH3)3], 35.2, 35.0 (COCH2), 33.0, 30.3, 30.2, 26.2, 26.1, 23.8 [(CH2)6], 14.57 (CH2CH3). 31P NMR (162 MHz, D2O, 1H-decoupled): δ = –0.57. ESI-HRMS: m/z [M + H+] calcd for C24H49NO8P: 510.3190; found: 510.3193.
    • 38a Powner MW, Sutherland JD. ChemBioChem 2008; 9: 2386
    • 38b Powner MW, Anastasi C, Crowe MA, Parkes AL, Raftery J, Sutherland JD. ChemBioChem 2007; 8: 1170