References and Notes
<A NAME="RS16406ST-1A">1a</A>
Pathak T.
Chem. Rev.
2002,
102:
1623
<A NAME="RS16406ST-1B">1b</A>
Gupte A.
Buolamwini JK.
Bioorg. Med. Chem. Lett.
2004,
14:
2257
<A NAME="RS16406ST-1C">1c</A>
Santaniello E.
Ciuffreda P.
Alessandrini L.
Synthesis
2005,
509
<A NAME="RS16406ST-1D">1d</A>
De Clercq E.
Field HJ.
Brit. J. Pharmacol.
2006,
147:
1
<A NAME="RS16406ST-2A">2a</A>
Hocek M.
Hol A.
Votruba I.
Dvoráková H.
J. Med. Chem.
2000,
43:
1817
<A NAME="RS16406ST-2B">2b</A>
Véliz EA.
Beal PA.
J. Org. Chem.
2001,
66:
8592
<A NAME="RS16406ST-2C">2c</A>
Lin X.
Robins MJ.
Org. Lett.
2000,
2:
3497
<A NAME="RS16406ST-2D">2d</A>
Prasad ASB.
Stevenson TM.
Citineni JR.
Nyzam V.
Knochel P.
Tetrahedron
1997,
53:
7237
<A NAME="RS16406ST-2E">2e</A>
Danishefsky SJ.
DeNinno SL.
Chen S.-H.
Boisvert L.
Barbachyn M.
J. Am. Chem. Soc.
1989,
111:
5810
<A NAME="RS16406ST-2F">2f</A>
Vorbrüggen H.
Krolikiewicz K.
Bennua B.
Chem. Ber.
1981,
114:
1234
<A NAME="RS16406ST-3">3</A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
2nd ed.:
John Wiley and Sons;
New York:
1991.
<A NAME="RS16406ST-4A">4a</A>
Bredereck H.
Martini A.
Chem. Ber.
1947,
80:
401
<A NAME="RS16406ST-4B">4b</A>
Ren B.
Cai L.
Zhang L.-R.
Yang Z.-J.
Zhang L.-H.
Tetrahedron Lett.
2005,
46:
8083
<A NAME="RS16406ST-4C">4c</A>
Nowak I.
Robins MJ.
Org. Lett.
2003,
5:
3345
<A NAME="RS16406ST-5A">5a</A>
Matsuda A.
Synthesis
1986,
385
<A NAME="RS16406ST-5B">5b</A>
Gupta M.
Nair V.
Tetrahedron Lett.
2005,
46:
1165
<A NAME="RS16406ST-5C">5c</A>
Jagtap PG.
Chen Z.
Szabó C.
Klotz K.-N.
Bioorg. Med. Chem. Lett.
2004,
14:
1495
<A NAME="RS16406ST-6A">6a</A>
Clark JH.
Green Chem.
2006,
8:
17
<A NAME="RS16406ST-6B">6b</A>
da Silva FM.
de Lacerda PSB.
Jones J.
Quim. Nova
2005,
28:
103
<A NAME="RS16406ST-6C">6c</A>
Anastas PT.
Kirchhoff MM.
Acc. Chem. Res.
2002,
35:
686
<A NAME="RS16406ST-7A">7a</A>
Sartori G.
Ballini R.
Bigi F.
Bosica G.
Maggi R.
Righi P.
Chem. Rev.
2004,
104:
199
<A NAME="RS16406ST-7B">7b</A>
Corma A.
Garcia H.
Chem. Rev.
2003,
103:
4307
<A NAME="RS16406ST-7C">7c</A>
Clark JH.
Macquarrie DJ.
Org. Process Res. Dev.
1997,
1:
149
<A NAME="RS16406ST-8A">8a</A>
Bhaskar PM.
Loganathan D.
Synlett
1999,
129
<A NAME="RS16406ST-8B">8b</A>
Adinolfi M.
Barone G.
Iadonisi A.
Schiattarella M.
Tetrahedron Lett.
2003,
44:
4661
<A NAME="RS16406ST-8C">8c</A>
Yadav VK.
Babu KG.
Mittal M.
Tetrahedron
2001,
57:
7047
<A NAME="RS16406ST-8D">8d</A>
Yadav VK.
Babu KG.
J. Org. Chem.
2004,
69:
577
<A NAME="RS16406ST-8E">8e</A>
Breton GW.
J. Org. Chem.
1997,
62:
8952
<A NAME="RS16406ST-8F">8f</A>
Heravi MM.
Behbahani FK.
Bamoharram FF.
J. Mol. Catal. A: Chem.
2006,
253:
16
<A NAME="RS16406ST-8G">8g</A>
Kumareswaran R.
Pachamuthu K.
Vankar YD.
Synlett
2000,
1652
<A NAME="RS16406ST-9A">9a</A>
Sá MM.
Silveira GP.
Castilho MS.
Pavão F.
Oliva G.
ARKIVOC
2002,
(viii):
112
<A NAME="RS16406ST-9B">9b</A>
Leitão A.
Andricopulo AD.
Oliva G.
Pupo MT.
de Marchi AA.
Vieira PC.
Silva MFGF.
Ferreira VF.
Souza MCBV.
Sá MM.
Morais VRS.
Montanari CA.
Bioorg. Med. Chem. Lett.
2004,
14:
2199
<A NAME="RS16406ST-10A">10a</A>
Wallau M.
Schuchardt U.
J. Braz. Chem. Soc.
1995,
6:
393
<A NAME="RS16406ST-10B">10b</A>
Martins L.
Cardoso D.
Quim. Nova
2006,
29:
358
<A NAME="RS16406ST-10C">10c</A>
Kartha KPR.
Mukhopadhyay B.
Field RA.
Carbohydr. Res.
2004,
339:
729
<A NAME="RS16406ST-11">11</A>
Preparation of Potassium-Exchanged Molecular Sieves.
A suspension of the appropriate molecular sieves (1.0 g) and 1 M KCl (10 mL) was stirred
at r.t. for 15-18 h, followed by vacuum filtration and air-drying, obtaining a clear
amorphous solid that can be stored for months without any special precautions.
General Procedure for the Synthesis of Acetylated Nucleosides 1-10.
Nucleoside (1.0 mmol), catalyst (0.6 g) and Ac2O (8-10 mmol) were stirred at 90-100 °C for the time indicated in Table
[2]
. The final mixture was cooled to r.t., filtered, the catalyst was rinsed with CH2Cl2, and the filtrate was concentrated under reduced pressure. The resulting residue
was diluted in EtOAc and washed with sat. NaHCO3 and H2O. Then the aqueous phases were back-extracted with CH2Cl2 and the combined organic extracts were dried over Na2SO4, filtered and concentrated to give a solid residue that was purified by recrystallization
with CH2Cl2.
Selected Data.
2′,3′,5′-O-Triacetylxanthosine (4): white solid; mp 135-137 °C. IR (KBr): νmax = 3475, 3193, 1749, 1700, 1232 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 2.04 (s, 3 H, CH3), 2.10 (s, 6 H, CH3), 4.22-4.38 (m, 3 H, H-4′ and H-5′), 5.39 (m, 1 H, H-3′), 5.66 (t, J = 5.5 Hz, 1 H, H-2′), 6.04 (d, J = 5.5 Hz, 1 H, H-1′), 7.86 (s, 1 H, H-8), 10.33 (s, 1 H, D2O exchange). 13C NMR (100 MHz, DMSO-d
6): δ = 25.64 (CH3), 25.78 (CH3), 25.96 (CH3), 68.40 (CH2), 75.16 (CH), 77.69 (CH), 84.80 (CH), 89.98 (CH), 120.72 (C), 139.40 (CH), 150.20
(C), 158.83 (C), 163.88 (C), 174.74 (C=O), 174.89 (C=O), 175.54 (C=O). Anal. Calcd
for C16H18N4O9·2H2O (%): C, 43.05; H, 4.97; N, 12.55. Found: C, 43.28; H, 4.57; N, 12.74.
2′,3′-O-Isopropylidene-2-N-5′-O-diacetylguanosine (9b): white solid; mp 124-125 °C. IR (KBr): νmax = 3454, 3202, 3178, 1738, 1708, 1683, 1250 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 1.32 (s, 3 H, CH3), 1.52 (s, 3 H, CH3), 1.97 (s, 3 H, CH3), 2.20 (s, 3 H, CH3), 4.08 (dd, J = 7.0, 12.0 Hz, 1 H, H-5′), 4.19 (dd, J = 4.5, 12.0 Hz, 1 H, H-5′), 4.30 (m, 1 H, H-4′), 5.18 (dd, J = 3.5, 6.5 Hz, 1 H, H-3′), 5.30 (dd, J = 2.0, 6.5 Hz, 1 H, H-2′), 6.11 (d, J = 2.0 Hz, 1 H, H-1′), 8.16 (s, 1 H, H-8), 11.54 (s, 1 H, D2O exchange), 12.07 (s, 1 H, D2O exchange). 13C NMR (100 MHz, DMSO-d
6): δ = 21.19 (CH3), 24.61 (CH3), 26.04 (CH3), 27.69 (CH3), 64.54 (CH2), 81.47 (CH), 84.29 (CH), 84.92 (CH), 89.24 (CH), 114.15 (C), 121.33 (C), 139.19
(CH), 148.56 (C), 148.64 (C), 155.46 (C), 170.76 (C=O), 174.23 (C=O). Anal. Calcd
for C17H21N5O7·H2O (%): C, 48.00; H, 5.45; N, 16.46. Found: C, 47.92; H, 5.80; N, 16.41.
General Procedure for the Microwave-Assisted Synthesis of Acetylated Nucleosides.
Microwave reactions were performed in 10 mL sealed tubes in a commercially available
monomode reactor (CEM Discover) with IR temperature monitoring and non-invasive pressure
transducer. In a typical procedure, nucleoside (1.0 mmol), Ac2O (8-10 mmol) and the catalyst (0.6 g) were placed in a 10 mL glass tube. The vessel
was then sealed with a septum, placed into the microwave cavity and irradiated with
stirring under the conditions presented in Table
[3]
. After allowing the mixture to cool to r.t., the reaction vessel was opened and the
contents were treated as above to give pure acetylated products after recrystallization.
<A NAME="RS16406ST-12">12</A>
Ikehara M.
Chem. Pharm. Bull.
1960,
8:
367
<A NAME="RS16406ST-13">13</A>
Holmes RE.
Robins RK.
J. Am. Chem. Soc.
1964,
86:
1242
<A NAME="RS16406ST-14A">14a</A>
Lewis LR.
Robins RK.
Cheng CC.
J. Med. Chem.
1964,
7:
200
<A NAME="RS16406ST-14B">14b</A>
Ikehara M.
Uno H.
Ishikawa F.
Chem. Pharm. Bull.
1964,
12:
267
<A NAME="RS16406ST-15">15</A>
Saladino R.
Crestini C.
Occhionero F.
Nicoletti R.
Tetrahedron
1995,
51:
3607
<A NAME="RS16406ST-16">16</A>
Kuboki A.
Ishihara T.
Kobayashi E.
Ohta H.
Ishii T.
Inoue A.
Mitsuda S.
Miyazaki T.
Kajihara Y.
Sugai T.
Biosci., Biotechnol., Biochem.
2000,
64:
363
<A NAME="RS16406ST-17">17</A>
Ciuffreda P.
Loseto A.
Santaniello E.
Tetrahedron
2002,
58:
5767