Synthesis 2017; 49(05): 987-997
DOI: 10.1055/s-0036-1588617
short review
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of α-Amino-H-phosphinic Acids and Derivatives

Mario Ordóñez*
a  Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Morelos, Mexico   Email: [email protected]
,
José Luis Viveros-Ceballos
b  Secretaría Académica, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Morelos, Mexico
,
Francisco J. Sayago
c  Departamento de Química Orgánica, ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain   Email: [email protected]
,
Carlos Cativiela*
c  Departamento de Química Orgánica, ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 06 August 2016

Accepted after revision: 07 September 2016

Publication Date:
18 October 2016 (online)


Abstract

α-Amino-H-phosphinic acids and derivatives are an important group of compounds of synthetic and pharmacological interest, and particular attention has been dedicated toward their stereoselective synthesis in recent years. While some of these compounds show activity by themselves, they are also valuable starting materials in the synthesis of phosphinic bioisosteres of natural peptides, where the hydrolyzable bond is substituted by a phosphinic functionality that mimics the transition state of peptide hydrolysis, thus acting as efficient enzyme­ inhibitors in which the molecular stereochemistry is demonstrated to be critical. This review summarizes the latest developments on the asymmetric synthesis of acyclic and phosphacyclic α-amino-H-phosphinic acids and derivatives following an order according to the strategy used; in addition, some implications in medicinal chemistry are disclosed.

1 Introduction

2 Stereoselective Synthesis of Acyclic α-Amino-H-phosphinic Acids and Derivatives

2.1 Stereoselective C–P Bond Formation (Addition of Phosphorus Compounds to Imines)

2.1.1 Chiral Imine Compounds

2.2 Stereoselective C–P Bond Formation (One-Pot, Three-Component Reaction)

2.2.1 Chiral Amino Compounds

2.3 Stereoselective C–C Bond Formation

2.3.1 Diastereoselective Alkylations

2.4 Resolution Methodologies

2.5 Conversion from Chiral α-Aminophosphonates

3 Synthesis of Phosphacyclic α-Amino-H-phosphinates

3.1 1,4,2-Oxazaphosphacycles

4 Concluding Remarks

 
  • References

    • 2a Ordóñez M, Viveros-Ceballos JL, Cativiela C, Sayago FJ. Tetrahedron 2015; 71: 1745
    • 2b Kafarski P, Górniak MG. V, Andrasiak I. Curr. Green Chem. 2015; 2: 218
    • 2c Ordóñez M, Sayago FJ, Cativiela C. Tetrahedron 2012; 68: 6369
    • 2d Keglevich G, Bálint E. Molecules 2012; 17: 12821
    • 2e Ordóñez M, Viveros-Ceballos JL, Cativiela C, Arizpe A. Curr. Org. Synth. 2012; 9: 310
    • 2f Kudzin ZH, Kudzin MH, Drabowicz J, Stevens CV. Curr. Org. Chem. 2011; 15: 2015
    • 2g Gulyukina NS, Makukhin NN, Beletskaya IP. Russ. J. Org. Chem. 2011; 47: 633
    • 2h Ordóñez M, Rojas-Cabrera H, Cativiela C. Tetrahedron 2009; 65: 17

      For some representative examples, see:
    • 3a Gluza K, Kafarski P. Transition State Analogues of Enzymatic Reaction as Potential Drugs. In Drug Discovery. El-Shemy H. InTech; Rijeka (Croatia): 2013: 325 ; DOI: 10.5772/52504. Available from: http://www.intechopen.com/books/drug-discovery/transition-state-analogues-of-enzymatic-reaction-as-potential-drugs (accessed Oct. 4, 2016)
    • 3b Fournié-Zaluski M.-C, Poras H, Roques BP, Nakajima Y, Ito K, Yoshimoto T. Acta Crystallogr. D 2009; 65: 814
    • 3c Mucha A, Lämmerhofer M, Lindner W, Pawelczak M, Kafarski P. Bioorg. Med. Chem. Lett. 2008; 18: 1550
    • 3d Banegas I, Prieto I, Vives F, Alba F, Gasparo M, Segarra AB, Hermoso F, Durán R, Ramírez M. J. Renin Angiotensin Aldosterone Syst. 2006; 7: 129
    • 3e Yiotakis A, Georgiadis D, Matziari M, Makaritis A, Dive V. Curr. Org. Chem. 2004; 8: 1135
    • 4a Mucha A, Kafarski P, Berlicki L. J. Med. Chem. 2011; 54: 5955
    • 4b Dive V, Georgiadis D, Matziari M, Makaritis A, Beau F, Cuniasse P, Yiotakis A. Cell. Mol. Life Sci. 2004; 61: 2010
    • 5a Yamagishi T. Yakugaku Zasshi 2014; 134: 915
    • 5b Drag M, Pawelczak M, Kafarski P. Chirality 2003; 15: S104
    • 5c Atherton FR, Hall MJ, Hassall CH, Lambert RW, Lloyd WJ, Ringrose PS. Antimicrob. Agents Chemother. 1979; 15: 696
    • 6a Viveros-Ceballos JL, Ordóñez M, Sayago FJ, Cativiela C. Molecules 2016; 21: 1141
    • 6b Mucha A. Molecules 2012; 17: 13530
    • 6c Virieux D, Volle J.-N, Pirat J.-L. ARKIVOC 2012; (iv): 264
    • 7a Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
    • 7b Pudovik AN. Dokl. Akad. Nauk SSSR 1952; 83: 865
    • 7c Pudovik AN, Komovalova IV. Synthesis 1979; 81
  • 8 Lewkowski J, Karpowicz R, Rybarczyk M. Heteroat. Chem. 2008; 19: 35
  • 9 Lewkowski J. J. Organomet. Chem. 2003; 681: 225
  • 10 Lewkowski J, Rzeźniczak M, Skowroński R. J. Organomet. Chem. 2004; 689: 1684
  • 11 Manzenrieder F, Frank AO, Huber T, Dorner-Ciossek C, Kessler H. Bioorg. Med. Chem. 2007; 15: 4136
  • 12 Barycki J, Gancarz R, Milewska M, Tyka R. Phosphorus, Sulfur Silicon Relat. Elem. 1995; 105: 117
    • 13a Lewkowski J, Dziegielewski M. Phosphorus, Sulfur Silicon Relat. Elem. 2010; 185: 838
    • 13b Lewkowski J, Rybarczyk M. Heteroat. Chem. 2008; 19: 283
  • 14 Grobelny D. Synthesis 1987; 942
  • 15 Goldeman W, Boduszek B. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184: 1413
  • 16 Zhang D, Yuan C. Chem. Eur. J. 2008; 14: 6049
  • 17 Yao Q, Yuan C. J. Org. Chem. 2013; 78: 6962
    • 18a Cherkasov RA, Galkin VI. Russ. Chem. Rev. 1998; 67: 857
    • 18b Fields E. J. Am. Chem. Soc. 1952; 74: 1528
    • 18c Kabachnik MI, Medved TY. Dokl. Akad. Nauk SSSR 1952; 83: 689
    • 19a Hamilton R, Walker B, Walker BJ. Tetrahedron Lett. 1995; 36: 4451
    • 19b Skowronski R, Grabowski G, Nazarski RB, Lewkowski JA. Phosphorus, Sulfur Silicon Relat. Elem. 1999; 144–146: 449
    • 19c Drag M, Grembecka J, Kafarski P. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 1591
    • 19d Drag M, Pawelczak M, Kafarski P. Chirality 2003; 15: S104
  • 20 Haruki T, Yamagishi T, Yokomatsu T. Tetrahedron: Asymmetry 2007; 18: 2886
  • 21 Yamagishi T, Kinbara A, Okubo N, Sato S, Fukaya H. Tetrahedron: Asymmetry 2012; 23: 1633
  • 22 Yamagishi T, Mori J, Haruki T, Yokomatsu T. Tetrahedron: Asymmetry 2011; 22: 1358
  • 23 Baylis EK, Campbell CD, Dingwall JG. J. Chem. Soc., Perkin Trans. 1 1984; 2845
  • 24 Khomutov RM, Osipova TI, Khurs EN, Dzhavakhiya VG. Mendeleev Commun. 2008; 18: 295
  • 25 Khomutov RM, Osipova TI. Bull. Acad. Sci. USSR Div. Chem. Sci. 1978; 27: 1722
  • 26 Bollinger M, Manzenrieder F, Kolb R, Bochen A, Neubauer S, Marinelli L, Limongelli V, Novellino E, Moessmer G, Pell R, Lindner W, Fanous J, Hoffman A, Kessler H. J. Med. Chem. 2012; 55: 871
    • 27a Hoffmann CV, Pell R, Lämmerhofer M, Lindner W. Anal. Chem. 2008; 80: 8780
    • 27b Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W. J. Chromatogr. A 2009; 1216: 1147
  • 28 Maier NM, Schefzick S, Lombardo GM, Feliz M, Rissanen K, Lindner W, Lipkowitz KB. J. Am. Chem. Soc. 2002; 124: 8611
    • 29a Lämmerhofer M, Hebenstreit D, Gavioli E, Lindner W, Mucha A, Kafarski P, Wieczorek P. Tetrahedron: Asymmetry 2003; 14: 2557
    • 29b Vassiliou S, Weglarz-Tomczak E, Berlicki L, Pawelczak M, Nocek B, Mulligan R, Joachimiak A, Mucha A. J. Med. Chem. 2014; 57: 8140
  • 30 Mucha A, Lämmerhofer M, Lindner W, Pawełczak M, Kafarski P. Bioorg. Med. Chem. Lett. 2008; 18: 1550
  • 31 Grembecka J, Mucha A, Cierpicki T, Kafarski P. J. Med. Chem. 2003; 46: 2641
  • 32 Faleev NG, Zhukov YN, Khurs EN, Gogoleva OI, Barbolina MV, Bazhulina NP, Belikov VM, Demidkina TV, Khomutov RM. Eur. J. Biochem. 2000; 267: 6897
    • 33a Alferov KV, Zhukov YN, Faleev NG, Khurs EN, Khomutov RM. Mendeleev Commun. 2003; 13: 127
    • 33b Alferov KV, Faleev NG, Khurs EN, Zhukov YN, Khomutov RM. Mendeleev Commun. 2002; 12: 2
    • 34a Pyun H.-J, Clarke MO, Cho A, Casarez A, Ji M, Fardis M, Pastor R, Sheng XC, Kim CU. Tetrahedron Lett. 2012; 53: 2360
    • 34b Clarke MO, Chen X, Cho A, Delaney WE, Doerffler E, Fardis M, Ji M, Mertzman M, Pakdaman R, Pyun H.-J, Rowe T, Yang CY, Sheng XC, Kim CU. Bioorg. Med. Chem. Lett. 2011; 21: 3568
  • 35 Pyun H.-J, Chaudhary K, Somoza JR, Sheng XC, Kim CU. Tetrahedron Lett. 2009; 50: 3833
  • 36 Clarke MO, Chen X, Cho A, Delaney WE, Doerffler E, Fardis M, Ji M, Mertzman M, Pakdaman R, Pyun H.-J, Rowe T, Yang CY, Sheng XC, Kim CU. Bioorg. Med. Chem. Lett. 2011; 21: 3568
  • 38 Volle J.-N, Virieux D, Starck M, Monbrun J, Clarion L, Pirat J.-L. Tetrahedron: Asymmetry 2006; 17: 1402
  • 39 Kelley JL, Musso DL, Boswell GE, Soroko FE, Cooper BR. J. Med. Chem. 1996; 39: 347
  • 40 Monbrun J, Dayde B, Cristau H.-J, Volle J.-N, Virieux D, Pirat J.-L. Tetrahedron 2011; 67: 540
    • 41a Viveros-Ceballos JL, Ordóñez M, Sayago FJ, Jiménez AI, Cativiela C. Eur. J. Org. Chem. 2016; 2711
    • 41b Zhang T, Kientzy C, Franco P, Ohnishi A, Kagamihara Y, Kurosawa H. J. Chromatogr. A 2005; 1075: 65
    • 41c Zhang T, Nguyen D, Franco P, Murakami T, Ohnishi A, Kurosawa H. Anal. Chim. Acta 2006; 557: 221
    • 41d Zhang T, Nguyen D, Franco P, Isobe Y, Michishita T, Murakami T. J. Pharm. Biomed. Anal. 2008; 46: 882