Synthesis 2017; 49(19): 4434-4447
DOI: 10.1055/s-0036-1588535
short review
© Georg Thieme Verlag Stuttgart · New York

Pd-catalyzed Auto-Tandem Cascades Based on N-Sulfonylhydrazones: Hetero- and Carbocyclization Processes

Raquel Barroso
Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica ‘Enrique Moles’, Universidad de Oviedo, C/Julián Clavería 8, Oviedo 33006, Spain   Email: [email protected]
,
María P. Cabal
Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica ‘Enrique Moles’, Universidad de Oviedo, C/Julián Clavería 8, Oviedo 33006, Spain   Email: [email protected]
,
Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica ‘Enrique Moles’, Universidad de Oviedo, C/Julián Clavería 8, Oviedo 33006, Spain   Email: [email protected]
› Author Affiliations
Financial support of this work by the Ministerio de Economía y Competitividad (MINECO) of Spain: Grants CTQ2013-41336-P and CTQ2016-76794-P (AEI/FEDER, UE). A Severo Ochoa predoctoral fellowship (Principado de Asturias, Spain) to R.B. is gratefully acknowledged.
Further Information

Publication History

Received: 07 June 2017

Accepted after revision: 12 July 2017

Publication Date:
10 August 2017 (online)


Abstract

The Pd-catalyzed cross-coupling between N-tosylhydrazones and organic halides is a powerful method for the creation of C–C bonds. This transformation has been included recently in cascade processes in which the same catalyst promotes various independent catalytic steps, a process known as auto-tandem catalysis. This strategy proves to be very useful for the construction of relatively complex carbo- and heterocyclic structures, as well as for the generation of molecular diversity. This short review will cover the different Pd-catalyzed auto-tandem reactions­ involving N-tosylhydrazones organized by the bond-forming sequence: C–C/C–N and C–C/C–C. Some examples of related tandem reactions leading to acyclic compounds are also highlighted.

1 Introduction

2 Auto-Tandem C–C/C–N Bond-Forming Reactions

3 Auto-Tandem C–C/C–C Bond-Forming Reactions

4 Tandem Reactions for the Synthesis of Linear Molecules

5 Summary and Outlook

 
  • References

  • 1 Tietze LF. Domino Reactions: Concepts for Efficient Organic Synthesis. Wiley; Weinheim: 2014
  • 2 Li JJ. Corey EJ. Name Reactions for Carbocyclic Ring Formations. Wiley; Hoboken: 2010
    • 4a Poli G. Giambastiani G. J. Org. Chem. 2002; 67: 9456
    • 4b Fogg DE. dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
    • 4c Shindoh N. Takemoto Y. Takasu K. Chem. Eur. J. 2009; 15: 12168
    • 4d Patil NT. Shinde VS. Gajula B. Org. Biomol. Chem. 2012; 10: 211
  • 5 For a recent account on auto-tandem reactions, see: Camp JE. Eur. J. Org. Chem. 2017; 425
  • 6 Metal-Catalyzed Cross-Coupling Reactions and More. Vol. 2. de Meijere A. Bräse S. Oestreich M. Wiley-VCH; Weinheim: 2014

    • For selected examples of C–C/C–N Pd-catalyzed auto-tandem processes, see:
    • 7a Ferraccioli R. Carenzi D. Rombolà O. Catellani M. Org. Lett. 2004; 6: 4759
    • 7b Fang Y.-Q. Lautens M. J. Org. Chem. 2008; 73: 538
    • 7c Candito DA. Lautens M. Angew. Chem. Int. Ed. 2009; 48: 6713
    • 7d Yadav AK. Verbeeck S. Hostyn S. Franck P. Sergeyev S. Maes BU. W. Org. Lett. 2013; 15: 1060

      For selected examples of C–N/C–C Pd-catalyzed auto-tandem processes, see:
    • 8a Bedford RB. Cazin CS. J. Chem. Commun. 2002; 2310
    • 8b Ackermann L. Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627

      For selected examples of C–C/C–C Pd-catalyzed auto-tandem processes, see:
    • 9a García A. Rodríguez D. Castedo L. Saá C. Domínguez D. Tetrahedron Lett. 2001; 42: 1903
    • 9b Prashad M. Liu Y. Mak XY. Har D. Repič O. Blacklock TJ. Tetrahedron Lett. 2002; 43: 8559
    • 9c Szlosek-Pinaud M. Diaz P. Martínez J. Lamaty F. Tetrahedron Lett. 2003; 44: 8657
    • 9d Lautens M. Fang Y.-Q. Org. Lett. 2003; 5: 3679
    • 9e Wegner HA. Scott LT. de Meijere A. J. Org. Chem. 2003; 68: 883
    • 9f Leclerc J.-P. André M. Fagnou K. J. Org. Chem. 2006; 71: 1711
    • 9g Pinto A. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2007; 46: 3291
    • 9h Chai DI. Lautens M. J. Org. Chem. 2009; 74: 3054
    • 9i Liu T.-P. Xing C.-H. Hu Q.-S. Angew. Chem. Int. Ed. 2010; 49: 2909
    • 9j Ye S. Liu J. Wu J. Chem. Commun. 2012; 48: 5028
    • 9k Wang W.-Y. Feng X. Hu B.-L. Deng C.-L. Zhang X.-G. J. Org. Chem. 2013; 78: 6025
  • 10 Barluenga J. Fernández MA. Aznar F. Valdés C. Chem. Eur. J. 2005; 11: 2276
    • 11a Barluenga J. Jiménez-Aquino A. Valdés C. Aznar F. Angew. Chem. Int. Ed. 2007; 46: 1529
    • 11b Barluenga J. Jiménez-Aquino A. Aznar F. Valdés C. J. Am. Chem. Soc. 2009; 131: 4031
    • 12a Barluenga J. Moriel P. Valdés C. Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
    • 12b Barluenga J. Tomás-Gamasa M. Moriel P. Aznar F. Valdés C. Chem. Eur. J. 2008; 14: 4792
    • 12c Barluenga J. Escribano M. Moriel P. Aznar F. Valdés C. Chem. Eur. J. 2009; 15: 13291
    • 12d Barluenga J. Escribano M. Aznar F. Valdés C. Angew. Chem. Int. Ed. 2010; 49: 6856

      For previous Pd-catalyzed cross-couplings involving the migratory insertion of Pd carbenes, see:
    • 13a Greenman KL. Carter DS. Van Vranken DL. Tetrahedron 2001; 57: 5219
    • 13b Greenman KL. Van Vranken DL. Tetrahedron 2005; 61: 6438
    • 13c Devine SK. J. Van Vranken DL. Org. Lett. 2007; 9: 2047
    • 14a Barluenga J. Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 14b Xiao Q. Zhang Y. Wang J. Acc. Chem. Res. 2013; 46: 236
    • 14c Liu Z. Wang J. J. Org. Chem. 2013; 78: 10024
    • 14d Xia Y. Wang J. Chem. Soc. Rev. 2017; 46: 2306
  • 15 Barluenga J. Quiñones N. Cabal M.-P. Aznar F. Valdés C. Angew. Chem. Int. Ed. 2011; 50: 2350
    • 16a Ibrahem I. Casas J. Córdova A. Angew. Chem. Int. Ed. 2004; 43: 6528
    • 16b Rodriguez B. Bolm C. J. Org. Chem. 2006; 71: 2888
  • 17 Huang Z. Yang Y. Xiao Q. Zhang Y. Wang J. Eur. J. Org. Chem. 2012; 6586
  • 18 Florentino L. Aznar F. Valdés C. Chem. Eur. J. 2013; 19: 10506
    • 19a Florentino L. Aznar F. Valdés C. Org. Lett. 2012; 14: 2323
    • 19b Barluenga J. Florentino L. Aznar F. Valdés C. Org. Lett. 2011; 13: 510
  • 20 Barroso R. Valencia RA. Cabal M.-P. Aznar F. Valdés C. Org. Lett. 2014; 16: 2264
  • 21 Barroso R. Cabal M.-P. Badía-Laiño R. Valdés C. Chem. Eur. J. 2015; 21: 16463
  • 22 Ngo TN. Dang TT. Villinger A. Langer P. Adv. Synth. Catal. 2016; 358: 1328
  • 23 Xiao Q. Ma J. Yang Y. Zhang Y. Wang J. Org. Lett. 2009; 11: 4732
  • 24 Paraja M. Valdés C. Org. Lett. 2017; 19: 2034
  • 25 Roche M. Hamze A. Brion J.-D. Alami M. Org. Lett. 2013; 15: 148
  • 26 Naret T. Retailleau P. Bignon J. Brion J.-D. Alami M. Hamze A. Adv. Synth. Catal. 2016; 358: 1833
  • 27 Zeng X. Cheng G. Shen J. Cui X. Org. Lett. 2013; 15: 3022
  • 28 Roche M. Frison G. Brion J.-D. Provot O. Hamze A. Alami M. J. Org. Chem. 2013; 78: 8485
  • 29 Roche M. Bignon J. Brion J.-D. Hamze A. Alami M. J. Org. Chem. 2014; 79: 7583
  • 30 Roche M. Salim SM. Bignon J. Levaique H. Brion J.-D. Alami M. Hamze A. J. Org. Chem. 2015; 80: 6715