Synthesis 2017; 49(15): 3505-3510
DOI: 10.1055/s-0036-1588449
paper
© Georg Thieme Verlag Stuttgart · New York

N-Heterocyclic Carbene Catalyzed Transformylation

Jared E. M. Fernando
School of Chemistry, Monash University, Clayton 3800, Victoria, Australia   Email: david.lupton@monash.edu
,
Alison Levens
School of Chemistry, Monash University, Clayton 3800, Victoria, Australia   Email: david.lupton@monash.edu
,
Daniel Moock
School of Chemistry, Monash University, Clayton 3800, Victoria, Australia   Email: david.lupton@monash.edu
,
School of Chemistry, Monash University, Clayton 3800, Victoria, Australia   Email: david.lupton@monash.edu
› Author Affiliations
Further Information

Publication History

Received: 04 April 2017

Accepted after revision: 07 May 2017

Publication Date:
12 June 2017 (online)


Dedicated to Prof. Herbert Mayr in celebration of his 70th birthday.

Abstract

The N-heterocyclic carbene (NHC) catalyzed transformylation has been developed for the conversion of 1°, 2°, and 3° alcohols to the corresponding formates. The reaction employs low catalyst loadings and methyl formate as the formyl transfer reagent. The scope of the reaction is broad with 23 examples reported with good yields (59–96%). The reaction is insensitive to common nitrogen and oxygen protecting groups and can be achieved in the presence of a number of heterocycles.

Supporting Information

 
  • References


    • For reviews covering the chemistry of formate esters see:
    • 1a Olah GA. Ohannesian L. Arvanaghi M. Chem. Rev. 1987; 87: 671
    • 1b Strazzolini P. Giumanini AG. Cauci S. Tetrahedron 1990; 46: 1081
  • 2 Ringold HJ. Löken B. Rosenkranz G. Sondheimer F. J. Am. Chem. Soc. 1956; 78: 816
  • 3 For an application see: Hayashi Y. Shoji M. Ishikawa H. Yamaguchi J. Tamura T. Imai H. Nishigaya Y. Takabe K. Kakeya H. Osada H. Angew. Chem. Int. Ed. 2008; 47: 6657 and references therein
  • 4 Álvarez-Calero JM. Jorge ZD. Massanet GM. Org. Lett. 2016; 18: 6344

    • For representative Vilsmeier–Haack strategies see:
    • 5a Barluenga J. Campos PJ. Gonzalez-Nuñez E. Asensio G. Synthesis 1985; 426
    • 5b De Luca L. Giacomelli G. Porcheddu A. J. Org. Chem. 2002; 67: 5152

    • For other in situ activation strategies see ref. 1b and:
    • 5c Olah GA. Vankar YD. Arvanaghi M. Sommer J. Angew. Chem., Int. Ed. Engl. 1979; 18: 614

      For the use of formyl Bt 2:
    • 6a Katritzky AR. Chang H.-X. Yang B. Synthesis 1995; 503

    • For a recent synthesis of this reagent see:
    • 6b Pasqua AE. Matheson M. Sewell AL. Marquez R. Org. Process Res. Dev. 2011; 15: 467

    • For use of formate 3 see:
    • 6c Hill DR. Hsiao C.-N. Kurukulasuriya R. Wittenberger SJ. Org. Lett. 2002; 4: 111

      For representative acid catalyzed approaches see:
    • 7a Nakatake D. Yokote Y. Matsushima Y. Yazakia R. Ohshima T. Green Chem. 2016; 18: 1524
    • 7b Iranpoor N. Firouzabadi H. Zolfigol MA. Synth. Commun. 1998; 28: 1923
    • 7c Nishiguchi T. Kawamine K. Ohtsuka T. J. Org. Chem. 1992; 57: 312

      For a selection of recent reviews on NHC catalysis see:
    • 8a Enders D. Niemeier O. Henseler A. Chem. Rev. 2007; 107: 5606

    • For homoenolate chemistry see:
    • 8b Nair V. Menon RS. Biju AT. Sinu CR. Paul RR. Jose A. Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 8c Douglas J. Churchill G. Smith AD. Synthesis 2012; 44: 2295

    • For cascade catalysis see:
    • 8d Grossmann A. Enders D. Angew. Chem. Int. Ed. 2012; 51: 314

    • For acyl anion chemistry see:
    • 8e Bugaut X. Glorius F. Chem. Soc. Rev. 2012; 41: 3511

    • For applications in total synthesis see:
    • 8f Izquierdo J. Hutson GE. Cohen DT. Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686

    • For acyl anion free catalysis see:
    • 8g Ryan SJ. Candish L. Lupton DW. Chem. Soc. Rev. 2013; 42: 4906

    • For catalysis under oxidative conditions see:
    • 8h De Sarkar S. Biswap A. Samanta RC. Studer A. Chem. Eur. J. 2013; 19: 4664

    • For acyl azoliums and enol azoliums see:
    • 8i Mahatthananchai J. Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 8j Zhang C. Hooper JF. Lupton DW. ACS Catal. 2017; 7: 2583

    • For an introduction to NHCs see:
    • 8k Hopkinson MN. Richter C. Schedler M. Glorius F. Nature (London) 2014; 510: 485
    • 8l Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307

      For selected examples:
    • 9a Ryan SJ. Candish L. Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
    • 9b Candish L. Lupton DW. Org. Lett. 2010; 12: 4836
    • 9c Candish L. Lupton DW. Org. Biomol. Chem. 2011; 9: 8182
    • 9d Candish L. Levens A. Lupton DW. J. Am. Chem. Soc. 2014; 136: 14397
    • 9e Levens A. Zhang C. Candish L. Forsyth CM. Lupton DW. Org. Lett. 2015; 17: 5332
  • 10 For a highlight on ester oxidation state NHC catalysis see: Chauhan P. Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485

    • For seminal contributions see:
    • 11a Grasa GA. Kissling RM. Nolan SP. Org. Lett. 2002; 4: 3583
    • 11b Nyce GW. Lamboy JA. Connor EF. Waymouth RM. Hedrick JL. Org. Lett. 2002; 4: 3587
    • 11c Suzuki Y. Yamauchi K. Muramatsu K. Sato M. Chem. Commun. 2004; 2770
    • 11d Kano T. Sasaki K. Maruoka K. Org. Lett. 2005; 7: 1347
  • 12 Jereb M. Vražič D. Zupan M. Tetrahedron Lett. 2009; 50: 2347
    • 13a Enders D. Breuer K. Teles JH. Helv. Chim. Acta 1996; 79: 1217

    • For the properties and stoichiometric reactions of this carbene see:
    • 13b Enders D. Breuer K. Raabe G. Runsink J. Teles JH. Melder J.-P. Ebel K. Brode S. Angew. Chem., Int. Ed. Engl. 1995; 34: 1021

      Studies implicating Brønsted base pathways in transesterification reactions see:
    • 14a Movassaghi M. Schmidt MA. Org. Lett. 2005; 7: 2453
    • 14b Lai C.-L. Lee HM. Hu C.-H. Tetrahedron Lett. 2005; 46: 6265

      For other examples of Brønsted base catalysis see:
    • 15a Phillips EM. Riedrich M. Scheidt KA. J. Am. Chem. Soc. 2010; 132: 13179
    • 15b Kang Q. Zhang Y. Org. Biomol. Chem. 2011; 9: 6715
    • 15c Candish L. Lupton DW. Chem. Sci. 2012; 3: 380
    • 15d Chen J. Huang Y. Nat. Commun. 2014; 5: 3437
    • 15e Chen J. Meng S. Wang L. Tang H. Huang Y. Chem. Sci. 2015; 6: 4184
  • 16 Niknam K. Zolfigol MA. Saberi D. Khonbazi M. Chin. J. Chem. 2009; 27: 1548
  • 17 Lu P. Hou T. Gu X. Li P. Org. Lett. 2015; 17: 1954
  • 18 Johnson TC. Clarkson GJ. Wills M. Organometallics 2011; 30: 1859
  • 19 Liu R. Lu Z.-H. Hu X.-H. Li J.-L. Yang X.-J. Org. Lett. 2015; 17: 1489
  • 20 Amin R. Ardeshir K. Heidar AliA.-N. Zahra T.-R. Chin. J. Catal. 2011; 32: 60