Synthesis 2017; 49(12): 2621-2631
DOI: 10.1055/s-0036-1588176
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2,4-Disubstituted Quinoline Derivatives via A3-Coupling: An EcoScale Evaluation

Shivani Naidoo
School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, 3209, South Africa   Email: [email protected]
,
Vineet Jeena*
School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, 3209, South Africa   Email: [email protected]
› Author Affiliations
Supported by: National Research Foundation of South Africa Thuthuka Grant (TTK150609119011)
Further Information

Publication History

Received: 10 February 2017

Accepted after revision: 28 March 2017

Publication Date:
26 April 2017 (online)


Abstract

The 2,4-disubstituted quinoline moiety is an important building block for numerous biologically active and industrially useful compounds. These elegant compounds can be synthesised via the three-component coupling between an aldehyde, amine, and alkyne commonly referred to as A3-coupling. This short review aims to give an overview of the progress made towards disubstituted quinoline derivatives using this innovative methodology.

1 Introduction

2 Applications of the Quinoline Moiety

2.1 Antimicrobial Properties

2.2 Anti-inflammatory Properties

2.3 Anticonvulsant Properties

2.4 Photophysical Properties

3 Synthesis Based on A3-Coupling

3.1 Copper-Catalysed Systems

3.2 Iron-Catalysed Systems

3.3 Miscellaneous Systems

3.3.1 Montmorillonite Clays

3.3.2 Polyoxometalates

3.3.3 Rare Earth Metals

3.3.4 Al2O3 Nanoparticles/Methanesulfonic Acid

4 Proposed Reaction Mechanism

5 EcoScale Evaluation

6 Conclusion

7 Appendix

 
  • References

  • 1 Solomon VR. Lee H. Curr. Med. Chem. 2011; 18: 1
  • 2 Prajapathi SM. Patel KD. Vekariya RH. Panchal SN. Patel HD. RSC Adv. 2014; 4: 24463
  • 3 Kannappan N. Reddy BS. R. Sen S. Nagarajan R. Dashpute S. J. Appl. Chem. Res. 2009; 9: 59 ; http://www.sid.ir/en/VEWSSID/J_pdf/1010820090107.pdf
  • 4 Wang Y. Chen C. Peng J. Li M. Angew. Chem. Int. Ed. 2013; 52: 1
  • 5 Khusnutdinov RI. Bayguzina AR. Dzhemilev UM. J. Organomet. Chem. 2014; 768: 75
  • 6 Michael JP. Nat. Prod. Rep. 2008; 25: 166
  • 7 Kouznetsov VV. Méndez LY. V. Gómez CM. M. Curr. Org. Chem. 2005; 9: 141
  • 8 Kumar S. Bawa S. Gupta H. Mini. Rev. Med. Chem. 2009; 9: 1648
  • 9 Fernandez-Bachiller MI. Perez C. Monjas L. Rademan J. Rodriguez-Franco MI. J. Med. Chem. 2012; 55: 1303
  • 10 Schmitt G. Br. Corros. J. 1984; 19: 165
  • 11 Ahamad I. Prasad R. Quraishi MA. Corros. Sci. 2010; 52: 933
    • 12a Ebenso EE. Kabanda MM. Arslan T. Saracoglu M. Kandemirli F. Murulana LC. Singh AK. Shukla SK. Hammouti B. Khaled K. Int. J. Electrochem. Sci. 2012; 7: 5643
    • 12b Ebenso EE. Obot IB. Murulana LC. Int. J. Electrochem. Sci. 2010; 5: 1574
  • 13 Ilango K. Valentina P. Subhakar K. Kathiraven MK. Austin J. Anal. Pharm. Chem. 2015; 2: 1048
  • 14 Aldridge S. Parascandola J. Sturchio JL. The Discovery and Development of Penicillin 1928–1945: The Alexander Fleming Laboratory Museum, London, UK, November 19, 1999: An International Historic Chemical Landmark. American Chemical Society; Washington D.C.: 1999
  • 15 Davies J. Davies D. Microbiol. Mol. Biol. Rev. 2010; 74: 417
  • 16 Narander P. Srinivas U. Ravinder M. Ananda Rao B. Ramesh C. Harakishore K. Gangadasu B. Murthy US. N. Rao VJ. Bioorg. Med. Chem. 2006; 14: 4600
    • 17a Khare M. Keady D. Expert Opin. Pharmacother. 2003; 4: 165
    • 17b Hamilton-Miller JM. Infection 2002; 30: 118
    • 17c Boucher H. Miller LG. Razonable RR. Clin. Infect. Dis. 2010; 51: S183
    • 18a Lam S. Singer C. Tucci V. Morthland VH. Pfaller MA. Isenberg HD. Am. J. Infect. Control 1995; 23: 170
    • 18b Nicolau DJ. Antimicrob. Chemother. 2002; 50: 61
  • 19 Amyes SG. B. Int. J. Antimicrob. Agents 2007; 3: S43
    • 20a Adam DJ. Antimicrob. Chemother. 2002; 50: 1
    • 20b Paladino J. Am. J. Health-Syst. Pharm. 2002; 59: 2413
    • 20c Moellering RC. Jr. Clin. Infect. Dis. 2006; 42: S1
  • 21 Sawada Y. Kayakiri H. Abe Y. Imai K. Mizutani T. Inamura N. Asario M. Aramori I. Hatori C. Katayama A. Oku T. Tanaka H. J. Med. Chem. 2004; 47: 1617
  • 22 Bhegi E. Hesdorffer D. Epilepsia 2014; 55: 963
  • 23 Garg N. Chandra T. Kumar A. Int. J. Pharm. Pharm. Sci. 2010; 2: 88
  • 24 Wei C.-X. Bian M. Gong G.-H. Molecules 2015; 20: 20741
  • 25 Gibson C. Schnatbaum K. Pfeifer JR. Locardi E. Paschke M. Reimer U. Richter U. Scharn D. Faussner A. Tradler T. J. Med. Chem. 2009; 52: 4370
  • 26 Guo L.-J. Wei C.-X. Jia J.-H. Zhao L.-M. Quan Z.-S. Eur. J. Med. Chem. 2009; 44: 954
  • 27 Li Y. Zhou X. Wu Z. Cao J. Ma C. He Y. Huang G. RSC Adv. 2015; 5: 88214
  • 28 Chen W.-C. Lee C.-S. Tong Q.-X. J. Mater. Chem. C 2015; 3: 10957
  • 29 Kido J. Shionoya H. Nagai K. Appl. Phys. Lett. 1995; 67
  • 30 Chen W.-C. Yuan Y. Wu G.-F. Wei H.-X. Tang L. Tong Q.-X. Wong F.-L. Lee C.-S. Adv. Opt. Mater. (Amsterdam, Neth.) 2014; 2: 626
  • 31 Kumar V. Gohain M. van Tonder JH. Ponra S. Bezuindenhout BC. B. Ntwaeaborwa OM. Swart HC. Opt. Mater. 2015; 50: 275
  • 32 Skraup ZH. Ber. Dtsch. Chem. Ges. 1880; 13: 2086
  • 33 Döebner O. von Miller W. Ber. Dtsch. Chem. Ges. 1881; 14: 2812
  • 34 Friedländer P. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
  • 35 Pfitzinger W. J. Prakt. Chem. 1886; 33: 100
  • 36 Chen H.-B. Zhao Y. Liao Y. RSC Adv. 2015; 5: 37737
  • 37 Peshkov VA. Pereshivko OP. Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
  • 38 Price GA. Brisdon AK. Flower KR. Pritchard RG. Quoyle P. Tetrahedron Lett. 2014; 55: 151
  • 39 Bobadilla LF. Blasco T. Odrio Z. Jose A. Phys. Chem. Chem. Phys. 2013; 13: 16927
  • 40 He T. Zha Z. Pan C. Wang Z. Synth. Commun. 2007; 37: 849
  • 41 Jeganathan M. Dhakshinamoorthy A. Pitchumani K. ACS Sustainable Chem. Eng. 2014; 2: 781
  • 42 Huma HZ. S. Halder R. Kalra SS. Das J. Iqbal J. Tetrahedron Lett. 2002; 43: 6485
  • 43 Xiao F. Chen Y. Liu Y. Wang J. Tetrahedron 2008; 64: 2755
  • 44 Meyet CE. Larsen CH. J. Org. Chem. 2014; 79: 9835
  • 45 Baur I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
  • 46 Cao K. Zhang F.-M. Tu Y.-Q. Zhuo X.-T. Fan C.-A. Chem. Eur. J. 2009; 15: 6332
  • 47 Zhang Y. Li P. Wang L. J. Heterocycl. Chem. 2011; 48: 153
  • 48 Naidoo S. Jeena V. Heterocycles 2016; 92: 1655
  • 49 Yao C. Qin B. Zhang H. Lu J. Wang D. Tu S. RSC Adv. 2012; 2: 3759
  • 50 Kaur N. Kishore D. J. Chem. Pharm. Res. 2012; 4: 991
  • 51 Huang T.-K. Wang R. Shi L. Lu X.-X. Catal. Commun. 2008; 9: 1143
  • 52 Kumar BS. Dhakshinamoorthy A. Pitchumani K. Catal. Sci. Technol. 2014; 4: 2378
  • 53 Kulkarni A. Torök B. Green Chem. 2010; 12: 875
  • 54 Chen X.-L. Zhang J.-M. Shang W.-L. Lu B.-Q. Jin J.-A. J. Fluorine Chem. 2012; 133: 139
    • 55a Mizuno N. Misono M. Chem. Rev. 1998; 98: 199
    • 55b Kozhevnikov IV. J. Mol. Catal. A.: Chem. 2007; 262: 86
    • 55c Firouzabadi H. Jafari AA. J. Iran. Chem. Soc. 2005; 2: 85
  • 56 Anvar S. Mohammadpoor-Baltork I. Tangestaninejad S. Moghadam M. Mirkhani V. Khosropour AR. Kia R. RSC Adv. 2012; 2: 8713
  • 57 Habibi MH. Tangestaninejad S. Mohammadpoor-Baltork I. Mirkhani V. Yadollahi B. Tetrahedron Lett. 2001; 42: 2851
  • 58 Molander GA. Chem. Rev. 1992; 92: 29
  • 59 Tang J. Wang L. Mao D. Wang W. Zhang L. Wu S. Xie Y. Tetrahedron 2011; 67: 8465
  • 60 Kumar A. Rao VK. Synlett 2011; 2157
  • 61 Raveendran P. Fu J. Wallen SL. J. Am. Chem. Soc. 2003; 125: 13940
  • 62 Eustis S. El-Sayed MA. Chem. Soc. Rev. 2006; 35: 209
  • 63 Shargi H. Aberi M. Aboonajmi J. J. Iran. Chem. Soc. 2016; 13: 2229
    • 64a Noyori R. Chem. Commun. 2003; 1807
    • 64b Sheldon RA. Green Chem. 2005; 7: 267
  • 65 Van Aken K. Strekowski L. Patiny L. Beilstein J. Org. Chem. 2006; 2: 3