Synthesis 2016; 48(24): 4381-4399
DOI: 10.1055/s-0035-1562795
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Progress on Copper-Mediated Directing-Group-Assisted C(sp2)–H Activation

Ming Shang
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Shang-Zheng Sun
b  Department of Chemistry, Innovative Drug Research Center, Shanghai University, 99 Shangda Road, 200444, P. R. of China   Email: [email protected]
,
Hong-Li Wang
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Ming-Ming Wang
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Hui-Xiong Dai*
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 24 April 2016

Accepted after revision: 07 July 2016

Publication Date:
09 September 2016 (online)


Abstract

Considerable progress has been made in the area of copper-mediated C(sp2)–H functionalization reactions with the assistance of chelating directing groups. Due to the advantages of copper catalysts such as low cost, low toxicity, and unique reactivity compared to precious metals, they have attracted more and more attention in organic synthesis. This review summarizes recent advances in this field according to the classification of directing groups.

1 Introduction

2 The Pyridine Directing Group

2.1 C–N Bond Formation

2.2 C–O Bond Formation

2.3 C–S Bond Formation

2.4 C–C Bond Formation

2.5 C–CN Bond Formation

2.6 C–Halogen Bond Formation

3 Bidentate Directing Groups

3.1 8-Aminoquinoline

3.2 (2-Pyridyl)Sulfonyl and Picolinic Acid

3.3 Amide-Oxazoline Auxiliary

3.4 2-(Pyridin-2-yl)isopropylamine (PIP Amine)

3.5 2-Aminopyridine 1-Oxide

4 Conclusions and Outlook

 
  • References

    • 1a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
  • 2 Murahashi S, Horiie S. J. Am. Chem. Soc. 1956; 78: 4816
    • 3a Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 3b Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 3c Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3d Beck EM, Gaunt MJ. Top. Curr. Chem. 2010; 292: 85
    • 3e Sun C.-L, Li B.-J, Shi Z.-J. Chem. Commun. 2010; 46: 677
    • 4a Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 4b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 4c Patureau FW, Wencel-Delord J, Glorius F. Aldrichimica Acta 2012; 45: 31
    • 4d Miura M, Satoh T, Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751
    • 4e Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 4f Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 5a Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y. Org. Lett. 2001; 3: 2579
    • 5b Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 5c Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 6a Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 6b Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 6c Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 6d Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 6e Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 6f Misal Castro LC, Chatani N. Chem. Lett. 2015; 44: 410

      For a few reviews on functionalizations of C–H bonds with copper salts, see:
    • 7a Hao W, Liu Y. Beilstein J. Org. Chem. 2015; 11: 2132
    • 7b Wan J.-P, Jing Y. Beilstein J. Org. Chem. 2015; 11: 2209
    • 7c Hu J.-L, Li J, Zhou Y.-F. Curr. Green Chem. 2015; 2: 170
  • 8 Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
  • 9 Reinaud O, Capdevielle P, Maumy M. J. Chem. Soc., Chem. Commun. 1990; 566
  • 10 Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
  • 11 Uemrara T, Imoto S, Chatani N. Chem. Lett. 2006; 35: 842
  • 12 Mizuhara T, Inuki S, Oishi S, Fujji N, Ohno H. Chem. Commun. 2009; 3413
  • 13 John A, Nicholas KM. J. Org. Chem. 2011; 76: 4158
  • 14 Shuai Q, Deng G, Chua Z, Bohle DS, Li C.-J. Adv. Synth. Catal. 2010; 352: 632
  • 15 Zhang L, Liu Z, Li H, Fang G, Barry B.-D, Belay TA, Bi X, Liu Q. Org. Lett. 2011; 13: 6536
  • 16 Wang W, Luo F, Zhang S, Cheng J. J. Org. Chem. 2010; 75: 2415
  • 17 Wang W, Pan C, Chen F, Cheng J. Chem. Commun. 2011; 47: 3978
  • 18 Bian Y.-J, Xiang C.-B, Chen Z.-M, Huang Z.-Z. Synlett 2011; 2407
  • 19 Rout SK, Guin S, Gogoi A, Majji G, Patel BK. Org. Lett. 2014; 16: 1614
  • 20 Begera A, Rout SK, Guin S, Patel BK. RSC Adv. 2014; 4: 55115
  • 21 Khemnar AB, Bhanage BM. Org. Biomol. Chem. 2014; 12: 9631
  • 22 Bhadra S, Matheis C, Katayev D, Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 9279
  • 23 Chu L, Yue X, Qing F.-L. Org. Lett. 2010; 12: 1644
  • 24 Sharma P, Rohilla S, Jain N. J. Org. Chem. 2015; 80: 4116
  • 25 Kitahara M, Umeda N, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2011; 133: 2160
  • 26 Odani R, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2014; 53: 10784
  • 27 Jin J, Wen Q, Lu P, Wang Y. Chem. Commun. 2012; 48: 9933
  • 28 Kou X, Zhao M, Qiao X, Zhu Y, Tong X, Shen Z. Chem. Eur. J. 2013; 19: 16880
  • 29 Pan C, Jin H, Xu P, Liu X, Cheng Y, Zhu C. J. Org. Chem. 2013; 78: 9494
  • 30 Xu H, Liu P.-T, Li Y.-H, Han F.-S. Org. Lett. 2013; 15: 3354
  • 31 Yan Y, Yuan Y, Jiao N. Org. Chem. Front. 2014; 1: 1176
  • 32 Lu Y, Wang R, Xiao X, Shen Z. Synlett 2011; 1038
  • 33 Mo S, Zhu Y, Shen Z. Org. Biomol. Chem. 2013; 11: 2756
  • 34 Du Z.-J, Gao L.-X, Lin Y.-J, Han F.-S. ChemCatChem 2014; 6: 123
  • 35 During the preparation of this review, a related summary on copper-catalyzed C–H functionalization assisted by bidentate directing groups was published online, see: Liu J, Chen G, Tan Z. Adv. Synth. Catal. 2016; 358: 1174
  • 36 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 37a Huffman LM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196
    • 37b Yao B, Wang D.-X, Huang Z.-T, Wang M.-X. Chem. Commun. 2009; 2899
  • 38 Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
  • 39 Tran LD, Roane J, Daugulis O. Angew. Chem. Int. Ed. 2013; 52: 6043
  • 40 Roane J, Daugulis O. J. Am. Chem. Soc. 2016; 138: 4601
  • 41 Truong T, Klimovica K, Daugulis O. J. Am. Chem. Soc. 2013; 135: 9342
  • 42 Roane J, Daugulis O. Org. Lett. 2013; 15: 5842
  • 43 Suess AM, Ertem MZ, Cramer CJ, Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
  • 44 Singh BK, Jana R. J. Org. Chem. 2016; 81: 831
  • 45 Katayev D, Pfister KF, Wendling T, Gooßen LJ. Chem. Eur. J. 2014; 20: 9902
  • 46 Liu J, Zhuang S, Gui Q, Chen X, Yang Z, Tan Z. Adv. Synth. Catal. 2015; 357: 732
  • 47 Yan X.-B, Gao P, Yang H.-B, Li Y.-X, Liu X.-Y, Liang Y.-M. Tetrahedron 2014; 70: 8730
  • 48 Liu J, Yu L, Zhuang S, Gui Q, Chen X, Wang W, Tan Z. Chem. Commun. 2015; 51: 6418
  • 49 Wang S, Guo R, Wang G, Chen S.-Y, Yu X.-Q. Chem. Commun. 2014; 50: 12718
  • 50 Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 4457
  • 51 Odani R, Hirano K, Satoh T, Miura M. J. Org. Chem. 2013; 78: 11045
  • 52 Dong J, Wang F, You J. Org. Lett. 2014; 16: 2884
  • 53 Zhang Y, Wang Q, Yu H, Huang Y. Org. Biomol. Chem. 2014; 12: 8844
  • 54 Gui Q, Chen X, Hu L, Wang D, Liu J, Tan Z. Adv. Synth. Catal. 2016; 358: 509
  • 55 Miura W, Hirano K, Miura M. Org. Lett. 2015; 17: 4034
  • 56 Urones B, Martínez AM, Rodríguez N, Arrayás RG, Carretero JC. Chem. Commun. 2013; 44: 11044
  • 57 Li Q, Zhang S.-Y, He G, Ai Z, Nack WA, Chen G. Org. Lett. 2014; 16: 1764
  • 58 Martínez AM, Rodríguez N, Arrayás RG, Carretero JC. Chem. Commun. 2014; 50: 2801
  • 59 Giri R, Maugel NL, Foxman BM, Yu J.-Q. Organometallics 2008; 27: 1667
  • 60 Shang M, Sun S.-Z, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 3354
  • 61 Lee W.-CC, Shen Y, Gutierrez DA, Li JJ. Org. Lett. 2016; 18: 2660
  • 62 Shang M, Sun S.-Z, Wang H.-L, Laforteza BN, Dai H.-X, Yu J.-Q. Angew. Chem. Int. Ed. 2014; 53: 10439
  • 63 Hu L, Chen X, Gui Q, Tan Z, Zhu G. Chem. Commun. 2016; 52: 6845
  • 64 Shang M, Wang H.-L, Sun S.-Z, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 11590
  • 65 Sun S.-Z, Shang M, Wang H.-L, Lin H.-X, Dai H.-X, Yu J.-Q. J. Org. Chem. 2015; 80: 8843
  • 66 Shang M, Sun S.-Z, Dai H.-X, Yu J.-Q. Org. Lett. 2014; 16: 5666
  • 67 Wang H.-L, Shang M, Sun S.-Z, Zhou Z.-L, Laforteza BN, Dai H.-X, Yu J.-Q. Org. Lett. 2015; 17: 122
  • 68 Liang S, Liu N.-W, Manolikakes G. Adv. Synth. Catal. 2016; 358: 159
  • 69 Li X, Liu Y.-H, Gu W.-J, Li B, Chen F.-J, Shi B.-F. Org. Lett. 2014; 16: 3904
  • 70 Yin X.-S, Li Y.-C, Yuan J, Gu W.-J, Shi B.-F. Org. Chem. Front. 2015; 2: 119
  • 71 Chen F.-J, Liao G, Li X, Wu J, Shi B.-F. Org. Lett. 2014; 16: 5644
  • 72 Rao W.-H, Shi B.-F. Org. Lett. 2015; 17: 2784
  • 73 Liu Y.-J, Liu Y.-H, Yin X.-S, Gu W.-J, Shi B.-F. Chem. Eur. J. 2015; 21: 205
  • 74 Li B, Liu B, Shi B.-F. Chem. Commun. 2015; 51: 5093
  • 75 Zhao S, Liu Y.-J, Yan S.-Y, Chen F.-J, Zhang Z.-Z, Shi B.-F. Org. Lett. 2015; 17: 3338
  • 76 Zhao S, Yuan J, Li Y.-C, Shi B.-F. Chem. Commun. 2015; 51: 12823
  • 77 Hao X.-Q, Chen L.-J, Ren B, Li L.-Y, Yang X.-Y, Gong J.-F, Niu J.-L, Song M.-P. Org. Lett. 2014; 16: 1104
  • 78 Zhang L.-B, Hao X.-Q, Zhang S.-K, Liu K, Ren B, Gong J.-F, Niu J.-L, Song M.-P. J. Org. Chem. 2014; 79: 10399
    • 79a Wang Z, Ni J, Kuninobu Y, Kanai M. Angew. Chem. Int. Ed. 2014; 53: 3496
    • 79b Wang Z, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 4790
    • 79c Wu X, Zhao Y, Ge H. Chem. Sci. 2015; 6: 5978
    • 79d Zhang J, Chen H, Wang B, Liu Z, Zhang Y. Org. Lett. 2015; 17: 2768
    • 79e Wang C, Yang Y, Qin D, He Z, You J. J. Org. Chem. 2015; 80: 8424