Synthesis 2017; 49(01): 17-28
DOI: 10.1055/s-0035-1562623
short review
© Georg Thieme Verlag Stuttgart · New York

Vicinal Tricarbonyl Compounds: Versatile Building Blocks for Natural Product Synthesis

Lars Selter
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany   Email: [email protected]
,
Lukas Zygalski
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany   Email: [email protected]
,
Eric Kerste
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany   Email: [email protected]
,
Ulrich Koert*
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 12 June 2016

Accepted after revision: 22 July 2016

Publication Date:
22 August 2016 (online)


Dedicated to Prof. Dieter Enders on the occasion of his 70th birthday

Abstract

Due to their high density of functional groups, vicinal tri­carbonyl compounds are versatile building blocks for the synthesis of complex target molecules. Methods for their preparation and their use in stereoselective C–C bond formations, as well as for the synthesis of heteroaromatics, are summarised for the period 2006–2016. Several examples for their applications in natural product synthesis (awajanomycin, cladoniamide, wailupemycin) are presented.

1 Introduction

2 Preparation of Vicinal Tricarbonyl Compounds

3 Use in Stereoselective C–C Bond Formations

4 Use for the Synthesis of Heteroaromatics

5 Examples from Natural Product Synthesis

6 Conclusion

 
  • References

    • 1a Wasserman HH, Parr J. Acc. Chem. Res. 2004; 37: 687
    • 1b Wasserman HH. Aldrichimica Acta 1987; 20: 63
  • 2 Rubin MB, Gleiter R. Chem. Rev. 2000; 100: 1121
  • 3 Kino T, Hatanaka H, Hashimoto M. J. Antibiot. 1987; 40: 1249
  • 4 Crown DA. J. Crim. L. Criminology & Police Sci 1969; 60: 258
  • 5 Schank K, Blattner R, Bouillon G. Chem. Ber. 1981; 114: 1951
    • 6a Sachs F, Harold V. Ber. Dtsch. Chem. Ges. 1907; 40: 2714
    • 6b Lombardo LJ, Wasserman HH. Tetrahedron Lett. 1989; 30: 1725
  • 7 Regitz M, Adolph HG. Justus Liebigs Ann. Chem. 1969; 723: 47
  • 8 Saba A. Synth. Commun. 1994; 24: 695
  • 9 Wasserman HH, Han WT. Tetrahedron Lett. 1984; 25: 3743
    • 10a Wasserman HH, Vu CB. Tetrahedron Lett. 1990; 31: 5205
    • 10b Wasserman HH, Baldino CM, Coats SJ. J. Org. Chem. 1995; 60: 8231
    • 11a Lee K. Bull. Korean Chem. Soc. 2010; 31: 2776
    • 11b Lee K. J. Korean Chem. Soc. 2015; 59: 537
  • 12 Dayer F, Dao HL, Gold H, Rode-Gowal H, Dahn H. Helv. Chim. Acta 1974; 57: 2201
  • 13 Duschek A, Kirsch SF. Chem. Eur. J. 2009; 15: 10713
  • 14 Sivan A, Deepthi A. Tetrahedron Lett. 2014; 55: 1890
    • 15a Wang ZL, Li HL, Ge LS, An XL, Zhang ZG, Luo X, Fossey JS, Deng WP. J. Org. Chem. 2014; 79: 1156
    • 15b Wang ZL, An XL, Ge LS, Jin JH, Luo X, Deng WP. Tetrahedron 2014; 70: 3788
    • 15c Yan J, Ni T, Yan F, Zhang J, Zhuang F. RSC Adv. 2015; 5: 89906
  • 16 Sun CQ, Cheng PT. W, Stevensom J, Dejneka T, Brown B, Wang TC, Robl JA, Poss MA. Tetrahedron Lett. 2002; 43: 1161
  • 17 Asahara H, Nishiwaki N. J. Org. Chem. 2014; 79: 11735
  • 18 Tatsugi J, Izawa Y. J. Chem. Res., Synop. 1988; 356
  • 19 Santos MS, Coelho F. RSC Adv. 2012; 2: 3237
  • 20 Goswami S, Maity AC, Fun HK, Chantrapromma S. Eur. J. Org. Chem. 2009; 1417
  • 21 Yonekawa M, Furusho Y, Sei Y, Takata T, Endo T. Tetrahedron 2013; 69: 4076
  • 22 Yuki T, Yonekawa M, Furusho Y, Sei Y, Tomita I, Endo T. Tetrahedron 2016; 72: 2868
  • 23 Roßbach J, Baumeister J, Harms K, Koert U. Eur. J. Org. Chem. 2013; 662
  • 24 Roßbach J, Harms K, Koert U. Org. Lett. 2015; 17: 3122
  • 25 Truong P, Shanahan CS, Doyle MP. Org. Lett. 2012; 14: 3608
  • 26 Evans DA, Wu J. J. Am. Chem. Soc. 2005; 127: 8006
  • 27 Truong PM, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2014; 53: 6468 ; Angew. Chem. 2014, 126, 6586
  • 28 Roßbach J, Harms K, Koert U. Eur. J. Org. Chem. 2014; 993
  • 29 Truong P, Xu X, Doyle MP. Tetrahedron Lett. 2011; 52: 2093
  • 30 Sha Q, Arman H, Doyle MP. Org. Lett. 2015; 17: 3876
  • 31 Truong PM, Mandler MD, Doyle MP. Tetrahedron Lett. 2015; 56: 3042
  • 32 Sha Q, Arman H, Doyle MP. Chem. Commun. 2016; 52: 108
  • 33 Jang J.-H, Kanoh K, Adachi K, Shizuri Y. J. Nat. Prod. 2006; 69: 1358
    • 34a Hiroya K, Kawamoto K, Inamoto K, Sakamoto T, Doi T. Tetrahedron Lett. 2009; 50: 2115
    • 34b Pritchard DR, Wilden LD. Tetrahedron Lett. 2010; 51: 1819
    • 35a Fu R, Ye JL, Dai XJ, Ruan YP, Huang PQ. J. Org. Chem. 2010; 75: 4230
    • 35b Fu R, Chen J, Guo LC, Ye JL, Ruan YP, Huang PQ. Org. Lett. 2009; 11: 5242
    • 36a Wohlfahrt M, Harms K, Koert U. Angew. Chem. Int. Ed. 2011; 50: 8404 ; Angew. Chem. 2011, 123, 8554
    • 36b Wohlfahrt M, Harms K, Koert U. Angew. Chem. Int. Ed. 2011; 50: 10742 ; Angew. Chem. 2011, 123, 10945
    • 36c Wohlfahrt M, Harms K, Koert U. Eur. J. Org. Chem. 2012; 2260
  • 37 Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ. Org. Lett. 2008; 10: 3501
  • 38 Loosley BC, Andersen RJ, Dake GR. Org. Lett. 2013; 15: 1152
  • 39 Schütte J, Kilgenstein F, Fischer M, Koert U. Eur. J. Org. Chem. 2014; 5302
  • 40 Newman SG, Lautens M. J. Am. Chem. Soc. 2010; 132: 11416
  • 41 Kimura T, Kanagaki S, Matsui Y, Imoto M, Watanabe T, Shibasaki M. Org. Lett. 2012; 14: 4418
  • 42 Sitachitta N, Gadepalli M, Davidson BS. Tetrahedron 1996; 52: 8073
  • 43 Kirsch S, Bach T. Angew. Chem. Int. Ed. 2003; 42: 4685 ; Angew. Chem. 2003, 115, 4833
  • 44 Seitz T, Harms K, Koert U. Synthesis 2014; 46: 381
  • 45 Schank K, Lieder R, Lick C, Glock R. Helv. Chim. Acta 2004; 87: 869