Synthesis 2016; 48(22): 3863-3878
DOI: 10.1055/s-0035-1562520
short review
© Georg Thieme Verlag Stuttgart · New York

Substrate-Assisted Carbon Dioxide Activation as a Versatile Approach for Heterocyclic Synthesis

Jeroen Rintjema
a  Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain   Email: [email protected]
,
Arjan W. Kleij*
a  Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain   Email: [email protected]
b  Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
› Author Affiliations
Further Information

Publication History

Received: 27 June 2016

Accepted: 29 June 2016

Publication Date:
17 August 2016 (online)


Abstract

The incorporation of CO2 into substrates containing alcohol or amine functional groups displays interesting substrate-controlled reactivity, both in terms of providing milder reaction conditions and the potential towards new reactivity modes. Various heterocyclic structures can be prepared using this substrate-driven approach starting from functional derivatives of (homo)allylic and propargylic alcohols/amines, epoxy alcohols, and hydroxy-oxetanes among others. This review summarizes the recent advances made in this area.

1 Introduction

2 Catalytic Conversion of Propargylic Alcohols

3 Catalytic Conversion of Propargylic Amines

4 Homoallylic and Allylic Alcohol Substrate Conversions

5 Transformation of Allylic Amines

6 Epoxy Alcohols/Amines as Substrates

7 Hydroxy-Substituted Oxetane and Azetidine Scaffolds

8 Conversion of Other Substrates

9 Summary and Outlook

 
  • References

  • 1 Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quere C. Nat. Geosci. 2014; 7: 709
    • 2a Lim X. Nature (London) 2015; 520: 628
    • 2b van den Assen N, Müller LJ, Steingrube A, Voll P, Bardow A. Environ. Sci. Technol. 2016; 50: 1093
    • 2c Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
  • 3 Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709
  • 4 Aresta M, Dibenedetto A, Angelini A. J. CO2 Util. 2013; 3–4: 65
  • 5 Omae I. Coord. Chem. Rev. 2012; 256: 1384
  • 6 Biochemistry . 5th ed.; Berg JM, Tymoczko JL, Stryer L. W. H. Freeman; New York: 2002
  • 7 Kelsey RA, Miller DA, Parkin SR, Liu K, Remias JE, Yang Y, Lightstone FC, Liu K, Lippert CA, Odom SA. Dalton Trans. 2016; 45: 324
    • 8a Zhang X, van Eldik R, Koike T, Kimura E. Inorg. Chem. 1993; 32: 5749
    • 8b Zhang X, van Eldik R. Inorg. Chem. 1995; 34: 5606
    • 9a Moller F, Merz K, Herrmann C, Apfel UP. Dalton Trans. 2016; 45: 904
    • 9b Bandeira NA. G, Garai S, Müller A, Bo C. Chem. Commun. 2015; 51: 15596
    • 10a Werner T, Tenhumberg N. J. CO2 Util. 2014; 7: 39
    • 10b Alves M, Grignard B, Gennen S, Mereau R, Detrembleur C, Jerome C, Tassaing T. Catal. Sci. Technol. 2015; 5: 4636
    • 10c Fiorani G, Guo W, Kleij AW. Green Chem. 2015; 17: 1375
  • 11 West KN, Wheeler C, McCarney JP, Griffith KN, Bush D, Liotta CL, Eckert CA. J. Phys. Chem. A 2001; 105: 3947
  • 12 Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM, Stoddart JF. J. Am. Chem. Soc. 2011; 133: 15312
  • 13 Martín C, Fiorani G, Kleij AW. ACS Catal. 2015; 5: 1353
    • 14a Hara Y, Onodera S, Kochi T, Kakiuchi K. Org. Lett. 2015; 17: 4850
    • 14b Toullec P, Carbayo Martin A, Gio-Batta M, Bruneau C, Dixneuf PH. Tetrahedron Lett. 2000; 41: 5527
    • 15a Gendre PL, Thominot P, Bruneau C, Dixneuf PH. J. Org. Chem. 1998; 63: 1806
    • 15b Ohe K, Matsuda H, Morimoto T, Ogoshi S, Chatani N, Murai S. J. Am. Chem. Soc. 1994; 116: 4125
  • 16 Dimroth P, Pasedach H. DE1098953, 1961
  • 17 Laas H, Nissen A, Nürrenbach A. Synthesis 1981; 958
  • 18 Iritani K, Yanagihara N, Utimoto K. J. Org. Chem. 1986; 51: 5499
  • 19 Inoue Y, Ishikawa J, Taniguchi M, Hashimoto H. Bull. Chem. Soc. Jpn. 1987; 60: 1204
  • 20 Sasaki Y. Tetrahedron Lett. 1986; 27: 1573
    • 21a Kim H.-S, Kim J.-W, Kwon S.-C, Shim S.-C, Kim T.-J. J. Organomet. Chem. 1997; 545–546: 337
    • 21b Jiang H.-F, Wang AZ, Liu H.-L, Qi C.-R. Eur. J. Org. Chem. 2008; 2309
    • 21c Gu Y, Shi F, Deng Y. J. Org. Chem. 2004; 69: 391
  • 22 Ouyang L, Tang X, He H, Qi C, Xiong W, Ren Y, Jiang H. Adv. Synth. Catal. 2015; 357: 2556
  • 23 Minakata S, Sasaki I, Ide T. Angew. Chem. Int. Ed. 2010; 49: 1309
  • 24 Yamada W, Sugawara Y, Cheng HM, Ikeno T, Yamada T. Eur. J. Org. Chem. 2007; 2604
  • 25 Yoshida S, Fukui K, Kikuchi S, Yamada T. J. Am. Chem. Soc. 2010; 132: 4072
    • 26a Tang X, Qi C, He H, Jiang H, Ren Y, Yuan G. Adv. Synth. Catal. 2013; 355: 2019
    • 26b Cui M, Qian Q, He Z, Ma J, Kang X, Hu J, Liu Z, Han B. Chem. Eur. J. 2015; 21: 15924
    • 27a Yang Z.-Z, Zhao Y, Zhang H, Yu B, Ma Z, Ji G, Liu Z. Chem. Commun. 2014; 50: 13910
    • 27b Yang Z, Yu B, Zhang H, Zhao Y, Chen Y, Ma Z, Ji G, Gao X, Han B, Liu Z. ACS Catal. 2016; 6: 1268
    • 28a Song Q.-W, Chen W.-Q, Ma R, Yu A, Li Q.-Y, Chang Y, He L.-N. ChemSusChem 2015; 8: 821
    • 28b Song Q.-W, He L.-N. Adv. Synth. Catal. 2016; 358: 1251
    • 28c Song Q.-W, Yu B, Li X.-D, Ma R, Diao Z.-F, Li R.-G, Li W, He L.-N. Green Chem. 2014; 16: 1633
  • 29 Kimura T, Kamata K, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 6700
  • 30 Hu J, Ma J, Zhu Q, Qian Q, Han H, Mei Q, Han B. Green Chem. 2016; 18: 382
  • 32 Fournier J, Bruneau C, Dixneuf PH. Tetrahedron Lett. 1989; 30: 3981
    • 33a Joumier JM, Fournier J, Bruneau C, Dixneuf PH. J. Chem. Soc., Perkin Trans. 1 1991; 3271
    • 33b Bruneau C, Dixneuf PH. J. Mol. Catal. 1992; 74: 97
  • 34 Kayaki Y, Yamamoto M, Ikariya T. J. Org. Chem. 2007; 72: 647
  • 35 Jung ME, Gervay J. J. Am. Chem. Soc. 1991; 113: 224
  • 36 Qi C, Huang L, Jiang H. Synthesis 2010; 1433
  • 37 Uemura K, Kawaguchi T, Takayama H, Nakamura A, Inoue Y. J. Mol. Catal. A: Chem. 1999; 139: 1
  • 38 Ca ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M. Adv. Synth. Catal. 2011; 353: 133
  • 39 Wang Y.-B, Sun D.-S, Zhou H, Zhang W.-Z, Lu X.-B. Green Chem. 2014; 16: 2266
    • 40a Kayaki Y, Yamamoto M, Ikariya T. Angew. Chem. Int. Ed. 2009; 48: 4194
    • 40b Tommasi I, Sorrentino F. Tetrahedron Lett. 2009; 50: 104
  • 41 Wang Y.-B, Wang Y.-M, Zhang W.-Z, Lu X.-B. J. Am. Chem. Soc. 2013; 135: 11996
    • 42a Heravi MM, Zadsirjan V. Tetrahedron: Asymmetry 2013; 24: 1149
    • 42b Evans DA, Ennis MD, Le T, Mandel N, Mandel G. J. Am. Chem. Soc. 1984; 106: 1154
  • 43 Sarkar A, Bhattacharyya S, Dey SK, Karmakar S, Mukherjee A. New J. Chem. 2014; 38: 817
  • 44 Giovanni Z, Pilar M, Giuliano Delle M, Domenico M, Laura N, Bruno B. Mini-Rev. Med. Chem. 2007; 7: 389
  • 45 Aurelio L, Brownlee RT. C, Hughes AB. Chem. Rev. 2004; 104: 5823
  • 46 Kim T.-J, Kwon K.-H, Kwon S.-C, Baeg J.-O, Shim S.-C, Lee D.-H. J. Organomet. Chem. 1990; 389: 205
    • 47a Mahé R, Dixneuf PH, Lécolier S. Tetrahedron Lett. 1986; 27: 6333
    • 47b Sasaki Y, Dixneuf PH. J. Chem. Soc., Chem. Commun. 1986; 790
    • 47c Sasaki Y, Dixneuf PH. J. Org. Chem. 1987; 52: 314
  • 48 Costa M, Chiusoli GP, Rizzardi M. Chem. Commun. 1996; 1699
  • 49 Yoshida S, Fukui K, Kikuchi S, Yamada T. Chem. Lett. 2009; 38: 786
  • 50 Hase S, Kayaki Y, Ikariya T. Organometallics 2013; 32: 5285
    • 51a Shi M, Shen Y.-M. J. Org. Chem. 2002; 67: 16
    • 51b Bacchi A, Chiusoli GP, Costa M, Gabriele B, Righi C, Salerno G. Chem. Commun. 1997; 1209
  • 52 Costa M, Chiusoli GP, Taffurelli D, Dalmonego G. J. Chem. Soc., Perkin Trans. 1 1998; 1541
  • 53 Hu J, Ma J, Zhang Z, Zhu Q, Zhou H, Lu W, Han B. Green Chem. 2015; 17: 1219
  • 54 Kayaki Y, Yamamoto M, Suzuki T, Ikariya T. Green Chem. 2006; 8: 1019
  • 55 Garcia-Dominguez P, Fehr L, Rusconi G, Nevado C. Chem. Sci. 2016; 7: 3914
  • 56 Deng Z, Wei J, Liao L, Huang H, Zhao X. Org. Lett. 2015; 17: 1834
  • 57 Cardillo G, Orena M, Porzi G, Sandri S. J. Chem. Soc., Chem. Commun. 1981; 465
  • 58 Wu X, Gao Q, Lian M, Liu S, Wu A. RSC Adv. 2014; 4: 51180
  • 59 Tanner DD, Gidley GC, Das N, Rowe JE, Potter A. J. Am. Chem. Soc. 1984; 106: 5261
  • 60 Glover SA, Goosen A. Tetrahedron Lett. 1980; 21: 2005
  • 61 Minakata S. Acc. Chem. Res. 2009; 42: 1172
  • 62 Usami K, Nagasawa Y, Yamaguchi E, Tada N, Itoh A. Org. Lett. 2016; 18: 8
  • 63 Tang S, Liu K, Long Y, Gao X, Gao M, Lei A. Org. Lett. 2015; 17: 2404
  • 64 Vara BA, Struble TJ, Wang W, Dobish MC, Johnston JN. J. Am. Chem. Soc. 2015; 137: 7302
  • 65 Jensen AE, Knochel P. J. Org. Chem. 2002; 67: 79
    • 66a Yoshida Y, Inoue S. Chem. Lett. 1977; 6: 1375
    • 66b McGhee WD, Riley DP. Organometallics 1992; 11: 900
  • 67 Cardillo G, Orena M, Sandri S. J. Org. Chem. 1986; 51: 713
  • 68 Toda T, Kitagawa Y. Angew. Chem., Int. Ed. Engl. 1987; 26: 334
    • 69a Fernández I, Muñoz L. Tetrahedron: Asymmetry 2006; 17: 2548
    • 69b García-Egido E, Fernández I, Muñoz L. Synth. Commun. 2006; 36: 3029
  • 70 Takeda Y, Okumura S, Tone S, Sasaki I, Minakata S. Org. Lett. 2012; 14: 4874
  • 71 Shu J, He L, Ding H, Wang L, Guo H, Gao Y, Dzakah EE, Zeng Z. Anal. Methods 2014; 6: 2306
  • 72 Barbosa J, Freitas A, Moura S, Mourão JL, Noronha da Silveira MI, Ramos F. J. Agric. Food Chem. 2011; 59: 11927
  • 73 Yoshida M, Ohsawa Y, Sugimoto K, Tokuyama H, Ihara M. Tetrahedron Lett. 2007; 48: 8678
  • 74 Soldi L, Massera C, Costa M, Della Ca’ N. Tetrahedron Lett. 2014; 55: 1379
    • 75a Decortes A, Castilla AM, Kleij AW. Angew. Chem. Int. Ed. 2010; 49: 9822
    • 75b Kathalikkattil AC, Babu R, Tharun J, Roshan R, Park D.-W. Catal. Surv. Asia 2015; 19: 223
    • 75c Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE. ChemSusChem 2015; 8: 2436
    • 75d Comerford JW, Ingram ID. V, North M, Wu X. Green Chem. 2015; 17: 1966
  • 76 Rintjema J, Epping R, Fiorani G, Martín E, Escudero-Adán EC, Kleij AW. Angew. Chem. Int. Ed. 2016; 55: 3972
  • 77 Kojima F, Aida T, Inoue S. J. Am. Chem. Soc. 1986; 108: 391
  • 78 Shang J, Guo X, Li Z, Deng Y. Green Chem. 2016; 18: 3082
  • 79 McCombie SW, Metz WA. Tetrahedron Lett. 1987; 28: 383
    • 80a Myers AG, Widdowson KL. Tetrahedron Lett. 1988; 29: 6389
    • 80b Myers AG, Proteau PJ, Handel TM. J. Am. Chem. Soc. 1988; 110: 7212
  • 81 Inkster JA. H, Ling I, Honson NS, Jacquet L, Gries R, Plettner E. Tetrahedron: Asymmetry 2005; 16: 3773
  • 82 Ishii S, Zhou M, Yoshida Y, Noguchi H. Synth. Commun. 1999; 29: 3207
  • 83 Ishida N, Shimamoto Y, Murakami M. Angew. Chem. Int. Ed. 2012; 51: 11750
  • 84 Gold EH. J. Am. Chem. Soc. 1971; 93: 2793
  • 85 Rintjema J, Guo W, Martin E, Escudero-Adán EC, Kleij AW. Chem. Eur. J. 2015; 21: 10754
  • 86 Yoshida Y, Ishii S, Yamashita T. Chem. Lett. 1984; 13: 1571
    • 87a Salvatore RN, Chu F, Nagle AS, Kapxhiu EA, Cross RM, Jung KW. Tetrahedron 2002; 58: 3329
    • 87b Shi M, Shen Y.-M. Molecules 2002; 7: 386
  • 88 Oi S, Nemoto K, Matsuno S, Inoue Y. Macromol. Rapid Commun. 1994; 15: 133
    • 89a Yan P, Tan X, Jing H, Duan S, Wang X, Liu Z. J. Org. Chem. 2011; 76: 2459
    • 89b Reithofer MR, Sum YN, Zhang Y. Green Chem. 2013; 15: 2086
  • 90 Soga K, Hosoda S, Nakamura H, Ikeda S. J. Chem. Soc., Chem. Commun. 1976; 617
  • 91 Kawanami H, Matsumoto H, Ikushima Y. Chem. Lett. 2005; 34: 60
  • 92 Gao J, Song Q.-W, He L.-N, Liu C, Yang Z.-Z, Han X, Li X.-D, Song Q.-C. Tetrahedron 2012; 68: 3835
  • 93 Adhikari D, Miller AW, Baik M.-H, Nguyen ST. Chem. Sci. 2015; 6: 1293
    • 94a Kathalikkattil AC, Tharun J, Roshan R, Soek H.-G, Park D.-W. Appl. Catal. A: Gen. 2012; 447–448: 107
    • 94b Takeda Y, Kawai H, Minakata S. Chem. Eur. J. 2013; 19: 13479
    • 94c Wu Y, Liu G. Tetrahedron Lett. 2011; 52: 6450
    • 94d Jiang H.-F, Ye J.-W, Qi C.-R, Huang L.-B. Tetrahedron Lett. 2010; 51: 928
  • 95 Phung C, Ulrich RM, Ibrahim M, Tighe NT. G, Lieberman DL, Pinhas AR. Green Chem. 2011; 13: 3224
  • 96 Nale DB, Saigaonkar SD, Bhanage BM. J. CO2 Util. 2014; 8: 67
  • 97 Ishida T, Kikuchi S, Tsubo T, Yamada T. Org. Lett. 2013; 15: 848
  • 98 Yamashita K, Hase S, Kayaki Y, Ikariya T. Org. Lett. 2015; 17: 2334